Spaces:
Runtime error
Runtime error
| # Copyright (c) Meta Platforms, Inc. and affiliates. | |
| # All rights reserved. | |
| # This source code is licensed under the license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| from functools import partial | |
| from typing import List, Tuple, Union | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from model.segment_anything_2.sam2.modeling.backbones.utils import ( | |
| PatchEmbed, | |
| window_partition, | |
| window_unpartition, | |
| ) | |
| from model.segment_anything_2.sam2.modeling.sam2_utils import DropPath, MLP | |
| def do_pool(x: torch.Tensor, pool: nn.Module, norm: nn.Module = None) -> torch.Tensor: | |
| if pool is None: | |
| return x | |
| # (B, H, W, C) -> (B, C, H, W) | |
| x = x.permute(0, 3, 1, 2) | |
| x = pool(x) | |
| # (B, C, H', W') -> (B, H', W', C) | |
| x = x.permute(0, 2, 3, 1) | |
| if norm: | |
| x = norm(x) | |
| return x | |
| class MultiScaleAttention(nn.Module): | |
| def __init__( | |
| self, | |
| dim: int, | |
| dim_out: int, | |
| num_heads: int, | |
| q_pool: nn.Module = None, | |
| ): | |
| super().__init__() | |
| self.dim = dim | |
| self.dim_out = dim_out | |
| self.num_heads = num_heads | |
| head_dim = dim_out // num_heads | |
| self.scale = head_dim**-0.5 | |
| self.q_pool = q_pool | |
| self.qkv = nn.Linear(dim, dim_out * 3) | |
| self.proj = nn.Linear(dim_out, dim_out) | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| B, H, W, _ = x.shape | |
| # qkv with shape (B, H * W, 3, nHead, C) | |
| qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1) | |
| # q, k, v with shape (B, H * W, nheads, C) | |
| q, k, v = torch.unbind(qkv, 2) | |
| # Q pooling (for downsample at stage changes) | |
| if self.q_pool: | |
| q = do_pool(q.reshape(B, H, W, -1), self.q_pool) | |
| H, W = q.shape[1:3] # downsampled shape | |
| q = q.reshape(B, H * W, self.num_heads, -1) | |
| # Torch's SDPA expects [B, nheads, H*W, C] so we transpose | |
| x = F.scaled_dot_product_attention( | |
| q.transpose(1, 2), | |
| k.transpose(1, 2), | |
| v.transpose(1, 2), | |
| ) | |
| # Transpose back | |
| x = x.transpose(1, 2) | |
| x = x.reshape(B, H, W, -1) | |
| x = self.proj(x) | |
| return x | |
| class MultiScaleBlock(nn.Module): | |
| def __init__( | |
| self, | |
| dim: int, | |
| dim_out: int, | |
| num_heads: int, | |
| mlp_ratio: float = 4.0, | |
| drop_path: float = 0.0, | |
| norm_layer: Union[nn.Module, str] = "LayerNorm", | |
| q_stride: Tuple[int, int] = None, | |
| act_layer: nn.Module = nn.GELU, | |
| window_size: int = 0, | |
| ): | |
| super().__init__() | |
| if isinstance(norm_layer, str): | |
| norm_layer = partial(getattr(nn, norm_layer), eps=1e-6) | |
| self.dim = dim | |
| self.dim_out = dim_out | |
| self.norm1 = norm_layer(dim) | |
| self.window_size = window_size | |
| self.pool, self.q_stride = None, q_stride | |
| if self.q_stride: | |
| self.pool = nn.MaxPool2d( | |
| kernel_size=q_stride, stride=q_stride, ceil_mode=False | |
| ) | |
| self.attn = MultiScaleAttention( | |
| dim, | |
| dim_out, | |
| num_heads=num_heads, | |
| q_pool=self.pool, | |
| ) | |
| self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() | |
| self.norm2 = norm_layer(dim_out) | |
| self.mlp = MLP( | |
| dim_out, | |
| int(dim_out * mlp_ratio), | |
| dim_out, | |
| num_layers=2, | |
| activation=act_layer, | |
| ) | |
| if dim != dim_out: | |
| self.proj = nn.Linear(dim, dim_out) | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| shortcut = x # B, H, W, C | |
| x = self.norm1(x) | |
| # Skip connection | |
| if self.dim != self.dim_out: | |
| shortcut = do_pool(self.proj(x), self.pool) | |
| # Window partition | |
| window_size = self.window_size | |
| if window_size > 0: | |
| H, W = x.shape[1], x.shape[2] | |
| x, pad_hw = window_partition(x, window_size) | |
| # Window Attention + Q Pooling (if stage change) | |
| x = self.attn(x) | |
| if self.q_stride: | |
| # Shapes have changed due to Q pooling | |
| window_size = self.window_size // self.q_stride[0] | |
| H, W = shortcut.shape[1:3] | |
| pad_h = (window_size - H % window_size) % window_size | |
| pad_w = (window_size - W % window_size) % window_size | |
| pad_hw = (H + pad_h, W + pad_w) | |
| # Reverse window partition | |
| if self.window_size > 0: | |
| x = window_unpartition(x, window_size, pad_hw, (H, W)) | |
| x = shortcut + self.drop_path(x) | |
| # MLP | |
| x = x + self.drop_path(self.mlp(self.norm2(x))) | |
| return x | |
| class Hiera(nn.Module): | |
| """ | |
| Reference: https://arxiv.org/abs/2306.00989 | |
| """ | |
| def __init__( | |
| self, | |
| embed_dim: int = 96, # initial embed dim | |
| num_heads: int = 1, # initial number of heads | |
| drop_path_rate: float = 0.0, # stochastic depth | |
| q_pool: int = 3, # number of q_pool stages | |
| q_stride: Tuple[int, int] = (2, 2), # downsample stride bet. stages | |
| stages: Tuple[int, ...] = (2, 3, 16, 3), # blocks per stage | |
| dim_mul: float = 2.0, # dim_mul factor at stage shift | |
| head_mul: float = 2.0, # head_mul factor at stage shift | |
| window_pos_embed_bkg_spatial_size: Tuple[int, int] = (14, 14), | |
| # window size per stage, when not using global att. | |
| window_spec: Tuple[int, ...] = ( | |
| 8, | |
| 4, | |
| 14, | |
| 7, | |
| ), | |
| # global attn in these blocks | |
| global_att_blocks: Tuple[int, ...] = ( | |
| 12, | |
| 16, | |
| 20, | |
| ), | |
| return_interm_layers=True, # return feats from every stage | |
| ): | |
| super().__init__() | |
| assert len(stages) == len(window_spec) | |
| self.window_spec = window_spec | |
| depth = sum(stages) | |
| self.q_stride = q_stride | |
| self.stage_ends = [sum(stages[:i]) - 1 for i in range(1, len(stages) + 1)] | |
| assert 0 <= q_pool <= len(self.stage_ends[:-1]) | |
| self.q_pool_blocks = [x + 1 for x in self.stage_ends[:-1]][:q_pool] | |
| self.return_interm_layers = return_interm_layers | |
| self.patch_embed = PatchEmbed( | |
| embed_dim=embed_dim, | |
| ) | |
| # Which blocks have global att? | |
| self.global_att_blocks = global_att_blocks | |
| # Windowed positional embedding (https://arxiv.org/abs/2311.05613) | |
| self.window_pos_embed_bkg_spatial_size = window_pos_embed_bkg_spatial_size | |
| self.pos_embed = nn.Parameter( | |
| torch.zeros(1, embed_dim, *self.window_pos_embed_bkg_spatial_size) | |
| ) | |
| self.pos_embed_window = nn.Parameter( | |
| torch.zeros(1, embed_dim, self.window_spec[0], self.window_spec[0]) | |
| ) | |
| dpr = [ | |
| x.item() for x in torch.linspace(0, drop_path_rate, depth) | |
| ] # stochastic depth decay rule | |
| cur_stage = 1 | |
| self.blocks = nn.ModuleList() | |
| for i in range(depth): | |
| dim_out = embed_dim | |
| # lags by a block, so first block of | |
| # next stage uses an initial window size | |
| # of previous stage and final window size of current stage | |
| window_size = self.window_spec[cur_stage - 1] | |
| if self.global_att_blocks is not None: | |
| window_size = 0 if i in self.global_att_blocks else window_size | |
| if i - 1 in self.stage_ends: | |
| dim_out = int(embed_dim * dim_mul) | |
| num_heads = int(num_heads * head_mul) | |
| cur_stage += 1 | |
| block = MultiScaleBlock( | |
| dim=embed_dim, | |
| dim_out=dim_out, | |
| num_heads=num_heads, | |
| drop_path=dpr[i], | |
| q_stride=self.q_stride if i in self.q_pool_blocks else None, | |
| window_size=window_size, | |
| ) | |
| embed_dim = dim_out | |
| self.blocks.append(block) | |
| self.channel_list = ( | |
| [self.blocks[i].dim_out for i in self.stage_ends[::-1]] | |
| if return_interm_layers | |
| else [self.blocks[-1].dim_out] | |
| ) | |
| def _get_pos_embed(self, hw: Tuple[int, int]) -> torch.Tensor: | |
| h, w = hw | |
| window_embed = self.pos_embed_window | |
| pos_embed = F.interpolate(self.pos_embed, size=(h, w), mode="bicubic") | |
| pos_embed = pos_embed + window_embed.tile( | |
| [x // y for x, y in zip(pos_embed.shape, window_embed.shape)] | |
| ) | |
| pos_embed = pos_embed.permute(0, 2, 3, 1) | |
| return pos_embed | |
| def forward(self, x: torch.Tensor) -> List[torch.Tensor]: | |
| x = self.patch_embed(x) | |
| # x: (B, H, W, C) | |
| # Add pos embed | |
| x = x + self._get_pos_embed(x.shape[1:3]) | |
| outputs = [] | |
| for i, blk in enumerate(self.blocks): | |
| x = blk(x) | |
| if (i == self.stage_ends[-1]) or ( | |
| i in self.stage_ends and self.return_interm_layers | |
| ): | |
| feats = x.permute(0, 3, 1, 2) | |
| outputs.append(feats) | |
| return outputs | |