File size: 50,037 Bytes
a360a9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
import os,shutil,sys,pdb,re
now_dir = os.getcwd()
sys.path.append(now_dir)
import json,yaml,warnings,torch
import platform
import psutil
import signal
from pathlib import Path

warnings.filterwarnings("ignore")
torch.manual_seed(233333)
tmp = os.path.join(now_dir, "TEMP")
os.makedirs(tmp, exist_ok=True)
os.environ["TEMP"] = tmp
if(os.path.exists(tmp)):
    for name in os.listdir(tmp):
        if(name=="jieba.cache"):continue
        path="%s/%s"%(tmp,name)
        delete=os.remove if os.path.isfile(path) else shutil.rmtree
        try:
            delete(path)
        except Exception as e:
            print(str(e))
            pass
import site
site_packages_roots = []
for path in site.getsitepackages():
    if "packages" in path:
        site_packages_roots.append(path)
if(site_packages_roots==[]):site_packages_roots=["%s/runtime/Lib/site-packages" % now_dir]
#os.environ["OPENBLAS_NUM_THREADS"] = "4"
os.environ["no_proxy"] = "localhost, 127.0.0.1, ::1"
os.environ["all_proxy"] = ""
for site_packages_root in site_packages_roots:
    if os.path.exists(site_packages_root):
        try:
            with open("%s/users.pth" % (site_packages_root), "w") as f:
                f.write(
                    "%s\n%s/tools\n%s/tools/damo_asr\n%s/GPT_SoVITS\n%s/tools/uvr5"
                    % (now_dir, now_dir, now_dir, now_dir, now_dir)
                )
            break
        except PermissionError:
            pass
from tools import my_utils
import traceback
import shutil
import pdb
import gradio as gr
from subprocess import Popen
import signal
from config import python_exec,infer_device,is_half,exp_root,webui_port_main,webui_port_infer_tts,webui_port_uvr5,webui_port_subfix,is_share
from tools.i18n.i18n import I18nAuto
i18n = I18nAuto()
from scipy.io import wavfile
from tools.my_utils import load_audio
from multiprocessing import cpu_count

import argparse
import os
import sys
import tempfile

import gradio as gr
import librosa.display
import numpy as np

import torch
import torchaudio
import traceback
from TTS.demos.xtts_ft_demo.utils.formatter import format_audio_list
from TTS.demos.xtts_ft_demo.utils.gpt_train import train_gpt

from TTS.tts.configs.xtts_config import XttsConfig
from TTS.tts.models.xtts import Xtts

# from .list to .csv
import pandas as pd
from sklearn.model_selection import train_test_split

def split_csv(input_csv, train_csv, eval_csv, eval_size=0.15):
    # Load the data from the CSV file
    data = pd.read_csv(input_csv, delimiter='|', header=0)

    # Split the data into training and evaluation sets
    train_data, eval_data = train_test_split(data, test_size=eval_size, random_state=42)

    # Save the training data to a CSV file
    train_data.to_csv(train_csv, index=False, sep='|')

    # Save the evaluation data to a CSV file
    eval_data.to_csv(eval_csv, index=False, sep='|')

    print("CSV files have been successfully split.")


def convert_list_to_csv(input_file, output_file):
    try:
        # Open the input .list file to read
        with open(input_file, 'r', encoding='utf-8') as infile:
            # Open the output .csv file to write
            with open(output_file, 'w', encoding='utf-8') as outfile:
                # Write the header to the CSV
                outfile.write("audio_file|text|speaker_name\n")
                # Process each line in the input file
                for line in infile:
                    parts = line.strip().split('|')
                    if len(parts) == 4:
                        # Extract relevant parts: WAV file path and transcription
                        wav_path = parts[0]
                        transcription = parts[3]
                        # Write the formatted line to the CSV file
                        outfile.write(f"{wav_path}|{transcription}|coqui\n")
        print("Conversion to CSV completed successfully.")
        split_csv(output_file, "train.csv", "eval.csv")
        print("Split completed successfully")
        return "train.csv", "eval.csv"
    except Exception as e:
        print(f"An error occurred: {e}")


def clear_gpu_cache():
    # clear the GPU cache
    if torch.cuda.is_available():
        torch.cuda.empty_cache()

XTTS_MODEL = None
def load_model(xtts_checkpoint, xtts_config, xtts_vocab):
    global XTTS_MODEL
    clear_gpu_cache()
    if not xtts_checkpoint or not xtts_config or not xtts_vocab:
        return "You need to run the previous steps or manually set the `XTTS checkpoint path`, `XTTS config path`, and `XTTS vocab path` fields !!"
    config = XttsConfig()
    config.load_json(xtts_config)
    XTTS_MODEL = Xtts.init_from_config(config)
    print("Loading XTTS model! ")
    XTTS_MODEL.load_checkpoint(config, checkpoint_path=xtts_checkpoint, vocab_path=xtts_vocab, use_deepspeed=False)
    if torch.cuda.is_available():
        XTTS_MODEL.cuda()

    print("Model Loaded!")
    return "Model Loaded!"

def run_tts(lang, tts_text, speaker_audio_file):
    if XTTS_MODEL is None or not speaker_audio_file:
        return "You need to run the previous step to load the model !!", None, None

    gpt_cond_latent, speaker_embedding = XTTS_MODEL.get_conditioning_latents(audio_path=speaker_audio_file, gpt_cond_len=XTTS_MODEL.config.gpt_cond_len, max_ref_length=XTTS_MODEL.config.max_ref_len, sound_norm_refs=XTTS_MODEL.config.sound_norm_refs)
    out = XTTS_MODEL.inference(
        text=tts_text,
        language=lang,
        gpt_cond_latent=gpt_cond_latent,
        speaker_embedding=speaker_embedding,
        temperature=XTTS_MODEL.config.temperature, # Add custom parameters here
        length_penalty=XTTS_MODEL.config.length_penalty,
        repetition_penalty=XTTS_MODEL.config.repetition_penalty,
        top_k=XTTS_MODEL.config.top_k,
        top_p=XTTS_MODEL.config.top_p,
    )

    with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp:
        out["wav"] = torch.tensor(out["wav"]).unsqueeze(0)
        out_path = fp.name
        torchaudio.save(out_path, out["wav"], 24000)

    return "Speech generated !", out_path, speaker_audio_file




# define a logger to redirect 
class Logger:
    def __init__(self, filename="log.out"):
        self.log_file = filename
        self.terminal = sys.stdout
        self.log = open(self.log_file, "w")

    def write(self, message):
        self.terminal.write(message)
        self.log.write(message)

    def flush(self):
        self.terminal.flush()
        self.log.flush()

    def isatty(self):
        return False

# redirect stdout and stderr to a file
sys.stdout = Logger()
sys.stderr = sys.stdout


# logging.basicConfig(stream=sys.stdout, level=logging.INFO)
import logging
logging.basicConfig(
    level=logging.WARNING,
    format="%(asctime)s [%(levelname)s] %(message)s",
    handlers=[
        logging.StreamHandler(sys.stdout)
    ]
)

def read_logs():
    sys.stdout.flush()
    with open(sys.stdout.log_file, "r") as f:
        return f.read()


os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 当遇到mps不支持的步骤时使用cpu

n_cpu=cpu_count()
           
ngpu = torch.cuda.device_count()
gpu_infos = []
mem = []
if_gpu_ok = False

# 判断是否有能用来训练和加速推理的N卡
if torch.cuda.is_available() or ngpu != 0:
    for i in range(ngpu):
        gpu_name = torch.cuda.get_device_name(i)
        if any(value in gpu_name.upper()for value in ["10","16","20","30","40","A2","A3","A4","P4","A50","500","A60","70","80","90","M4","T4","TITAN","L4","4060"]):
            # A10#A100#V100#A40#P40#M40#K80#A4500
            if_gpu_ok = True  # 至少有一张能用的N卡
            gpu_infos.append("%s\t%s" % (i, gpu_name))
            mem.append(int(torch.cuda.get_device_properties(i).total_memory/ 1024/ 1024/ 1024+ 0.4))
# 判断是否支持mps加速
if torch.backends.mps.is_available():
    if_gpu_ok = True
    gpu_infos.append("%s\t%s" % ("0", "Apple GPU"))
    mem.append(psutil.virtual_memory().total/ 1024 / 1024 / 1024) # 实测使用系统内存作为显存不会爆显存

if if_gpu_ok and len(gpu_infos) > 0:
    gpu_info = "\n".join(gpu_infos)
    default_batch_size = min(mem) // 2
else:
    gpu_info = i18n("很遗憾您这没有能用的显卡来支持您训练")
    default_batch_size = 1
gpus = "-".join([i[0] for i in gpu_infos])

pretrained_sovits_name="GPT_SoVITS/pretrained_models/s2G488k.pth"
pretrained_gpt_name="GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"
def get_weights_names():
    SoVITS_names = [pretrained_sovits_name]
    for name in os.listdir(SoVITS_weight_root):
        if name.endswith(".pth"):SoVITS_names.append(name)
    GPT_names = [pretrained_gpt_name]
    for name in os.listdir(GPT_weight_root):
        if name.endswith(".ckpt"): GPT_names.append(name)
    return SoVITS_names,GPT_names
SoVITS_weight_root="SoVITS_weights"
GPT_weight_root="GPT_weights"
os.makedirs(SoVITS_weight_root,exist_ok=True)
os.makedirs(GPT_weight_root,exist_ok=True)
SoVITS_names,GPT_names = get_weights_names()

def custom_sort_key(s):
    # 使用正则表达式提取字符串中的数字部分和非数字部分
    parts = re.split('(\d+)', s)
    # 将数字部分转换为整数,非数字部分保持不变
    parts = [int(part) if part.isdigit() else part for part in parts]
    return parts

def change_choices():
    SoVITS_names, GPT_names = get_weights_names()
    return {"choices": sorted(SoVITS_names,key=custom_sort_key), "__type__": "update"}, {"choices": sorted(GPT_names,key=custom_sort_key), "__type__": "update"}

p_label=None
p_uvr5=None
p_asr=None
p_denoise=None
p_tts_inference=None

def kill_proc_tree(pid, including_parent=True):  
    try:
        parent = psutil.Process(pid)
    except psutil.NoSuchProcess:
        # Process already terminated
        return

    children = parent.children(recursive=True)
    for child in children:
        try:
            os.kill(child.pid, signal.SIGTERM)  # or signal.SIGKILL
        except OSError:
            pass
    if including_parent:
        try:
            os.kill(parent.pid, signal.SIGTERM)  # or signal.SIGKILL
        except OSError:
            pass

system=platform.system()
def kill_process(pid):
    if(system=="Windows"):
        cmd = "taskkill /t /f /pid %s" % pid
        os.system(cmd)
    else:
        kill_proc_tree(pid)
    

def change_label(if_label,path_list):
    global p_label
    if(if_label==True and p_label==None):
        path_list=my_utils.clean_path(path_list)
        cmd = '"%s" tools/subfix_webui.py --load_list "%s" --webui_port %s --is_share %s'%(python_exec,path_list,webui_port_subfix,is_share)
        yield i18n("打标工具WebUI已开启")
        print(cmd)
        p_label = Popen(cmd, shell=True)
    elif(if_label==False and p_label!=None):
        kill_process(p_label.pid)
        p_label=None
        yield i18n("打标工具WebUI已关闭")

def change_uvr5(if_uvr5):
    global p_uvr5
    if(if_uvr5==True and p_uvr5==None):
        cmd = '"%s" tools/uvr5/webui.py "%s" %s %s %s'%(python_exec,infer_device,is_half,webui_port_uvr5,is_share)
        yield i18n("UVR5已开启")
        print(cmd)
        p_uvr5 = Popen(cmd, shell=True)
    elif(if_uvr5==False and p_uvr5!=None):
        kill_process(p_uvr5.pid)
        p_uvr5=None
        yield i18n("UVR5已关闭")

def change_tts_inference(if_tts,bert_path,cnhubert_base_path,gpu_number,gpt_path,sovits_path):
    global p_tts_inference
    if(if_tts==True and p_tts_inference==None):
        os.environ["gpt_path"]=gpt_path if "/" in gpt_path else "%s/%s"%(GPT_weight_root,gpt_path)
        os.environ["sovits_path"]=sovits_path if "/"in sovits_path else "%s/%s"%(SoVITS_weight_root,sovits_path)
        os.environ["cnhubert_base_path"]=cnhubert_base_path
        os.environ["bert_path"]=bert_path
        os.environ["_CUDA_VISIBLE_DEVICES"]=gpu_number
        os.environ["is_half"]=str(is_half)
        os.environ["infer_ttswebui"]=str(webui_port_infer_tts)
        os.environ["is_share"]=str(is_share)
        cmd = '"%s" GPT_SoVITS/inference_webui.py'%(python_exec)
        yield i18n("TTS推理进程已开启")
        print(cmd)
        p_tts_inference = Popen(cmd, shell=True)
    elif(if_tts==False and p_tts_inference!=None):
        kill_process(p_tts_inference.pid)
        p_tts_inference=None
        yield i18n("TTS推理进程已关闭")

from tools.asr.config import asr_dict
def open_asr(asr_inp_dir, asr_opt_dir, asr_model, asr_model_size, asr_lang):
    global p_asr
    if(p_asr==None):
        asr_inp_dir=my_utils.clean_path(asr_inp_dir)
        cmd = f'"{python_exec}" tools/asr/{asr_dict[asr_model]["path"]}'
        cmd += f' -i "{asr_inp_dir}"'
        cmd += f' -o "{asr_opt_dir}"'
        cmd += f' -s {asr_model_size}'
        cmd += f' -l {asr_lang}'
        cmd += " -p %s"%("float16"if is_half==True else "float32")

        yield "ASR任务开启:%s"%cmd,{"__type__":"update","visible":False},{"__type__":"update","visible":True}
        print(cmd)
        p_asr = Popen(cmd, shell=True)
        p_asr.wait()
        p_asr=None
        yield f"ASR任务完成, 查看终端进行下一步",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
    else:
        yield "已有正在进行的ASR任务,需先终止才能开启下一次任务",{"__type__":"update","visible":False},{"__type__":"update","visible":True}
        # return None

def close_asr():
    global p_asr
    if(p_asr!=None):
        kill_process(p_asr.pid)
        p_asr=None
    return "已终止ASR进程",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
def open_denoise(denoise_inp_dir, denoise_opt_dir):
    global p_denoise
    if(p_denoise==None):
        denoise_inp_dir=my_utils.clean_path(denoise_inp_dir)
        denoise_opt_dir=my_utils.clean_path(denoise_opt_dir)
        cmd = '"%s" tools/cmd-denoise.py -i "%s" -o "%s" -p %s'%(python_exec,denoise_inp_dir,denoise_opt_dir,"float16"if is_half==True else "float32")

        yield "语音降噪任务开启:%s"%cmd,{"__type__":"update","visible":False},{"__type__":"update","visible":True}
        print(cmd)
        p_denoise = Popen(cmd, shell=True)
        p_denoise.wait()
        p_denoise=None
        yield f"语音降噪任务完成, 查看终端进行下一步",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
    else:
        yield "已有正在进行的语音降噪任务,需先终止才能开启下一次任务",{"__type__":"update","visible":False},{"__type__":"update","visible":True}
        # return None

def close_denoise():
    global p_denoise
    if(p_denoise!=None):
        kill_process(p_denoise.pid)
        p_denoise=None
    return "已终止语音降噪进程",{"__type__":"update","visible":True},{"__type__":"update","visible":False}

p_train_SoVITS=None
def open1Ba(batch_size,total_epoch,exp_name,text_low_lr_rate,if_save_latest,if_save_every_weights,save_every_epoch,gpu_numbers1Ba,pretrained_s2G,pretrained_s2D):
    global p_train_SoVITS
    if(p_train_SoVITS==None):
        with open("GPT_SoVITS/configs/s2.json")as f:
            data=f.read()
            data=json.loads(data)
        s2_dir="%s/%s"%(exp_root,exp_name)
        os.makedirs("%s/logs_s2"%(s2_dir),exist_ok=True)
        if(is_half==False):
            data["train"]["fp16_run"]=False
            batch_size=max(1,batch_size//2)
        data["train"]["batch_size"]=batch_size
        data["train"]["epochs"]=total_epoch
        data["train"]["text_low_lr_rate"]=text_low_lr_rate
        data["train"]["pretrained_s2G"]=pretrained_s2G
        data["train"]["pretrained_s2D"]=pretrained_s2D
        data["train"]["if_save_latest"]=if_save_latest
        data["train"]["if_save_every_weights"]=if_save_every_weights
        data["train"]["save_every_epoch"]=save_every_epoch
        data["train"]["gpu_numbers"]=gpu_numbers1Ba
        data["data"]["exp_dir"]=data["s2_ckpt_dir"]=s2_dir
        data["save_weight_dir"]=SoVITS_weight_root
        data["name"]=exp_name
        tmp_config_path="%s/tmp_s2.json"%tmp
        with open(tmp_config_path,"w")as f:f.write(json.dumps(data))

        cmd = '"%s" GPT_SoVITS/s2_train.py --config "%s"'%(python_exec,tmp_config_path)
        yield "SoVITS训练开始:%s"%cmd,{"__type__":"update","visible":False},{"__type__":"update","visible":True}
        print(cmd)
        p_train_SoVITS = Popen(cmd, shell=True)
        p_train_SoVITS.wait()
        p_train_SoVITS=None
        yield "SoVITS训练完成",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
    else:
        yield "已有正在进行的SoVITS训练任务,需先终止才能开启下一次任务",{"__type__":"update","visible":False},{"__type__":"update","visible":True}

def close1Ba():
    global p_train_SoVITS
    if(p_train_SoVITS!=None):
        kill_process(p_train_SoVITS.pid)
        p_train_SoVITS=None
    return "已终止SoVITS训练",{"__type__":"update","visible":True},{"__type__":"update","visible":False}

p_train_GPT=None
def open1Bb(batch_size,total_epoch,exp_name,if_dpo,if_save_latest,if_save_every_weights,save_every_epoch,gpu_numbers,pretrained_s1):
    global p_train_GPT
    if(p_train_GPT==None):
        with open("GPT_SoVITS/configs/s1longer.yaml")as f:
            data=f.read()
            data=yaml.load(data, Loader=yaml.FullLoader)
        s1_dir="%s/%s"%(exp_root,exp_name)
        os.makedirs("%s/logs_s1"%(s1_dir),exist_ok=True)
        if(is_half==False):
            data["train"]["precision"]="32"
            batch_size = max(1, batch_size // 2)
        data["train"]["batch_size"]=batch_size
        data["train"]["epochs"]=total_epoch
        data["pretrained_s1"]=pretrained_s1
        data["train"]["save_every_n_epoch"]=save_every_epoch
        data["train"]["if_save_every_weights"]=if_save_every_weights
        data["train"]["if_save_latest"]=if_save_latest
        data["train"]["if_dpo"]=if_dpo
        data["train"]["half_weights_save_dir"]=GPT_weight_root
        data["train"]["exp_name"]=exp_name
        data["train_semantic_path"]="%s/6-name2semantic.tsv"%s1_dir
        data["train_phoneme_path"]="%s/2-name2text.txt"%s1_dir
        data["output_dir"]="%s/logs_s1"%s1_dir

        os.environ["_CUDA_VISIBLE_DEVICES"]=gpu_numbers.replace("-",",")
        os.environ["hz"]="25hz"
        tmp_config_path="%s/tmp_s1.yaml"%tmp
        with open(tmp_config_path, "w") as f:f.write(yaml.dump(data, default_flow_style=False))
        # cmd = '"%s" GPT_SoVITS/s1_train.py --config_file "%s" --train_semantic_path "%s/6-name2semantic.tsv" --train_phoneme_path "%s/2-name2text.txt" --output_dir "%s/logs_s1"'%(python_exec,tmp_config_path,s1_dir,s1_dir,s1_dir)
        cmd = '"%s" GPT_SoVITS/s1_train.py --config_file "%s" '%(python_exec,tmp_config_path)
        yield "GPT训练开始:%s"%cmd,{"__type__":"update","visible":False},{"__type__":"update","visible":True}
        print(cmd)
        p_train_GPT = Popen(cmd, shell=True)
        p_train_GPT.wait()
        p_train_GPT=None
        yield "GPT训练完成",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
    else:
        yield "已有正在进行的GPT训练任务,需先终止才能开启下一次任务",{"__type__":"update","visible":False},{"__type__":"update","visible":True}

def close1Bb():
    global p_train_GPT
    if(p_train_GPT!=None):
        kill_process(p_train_GPT.pid)
        p_train_GPT=None
    return "已终止GPT训练",{"__type__":"update","visible":True},{"__type__":"update","visible":False}

ps_slice=[]
def open_slice(inp,opt_root,threshold,min_length,min_interval,hop_size,max_sil_kept,_max,alpha,n_parts):
    global ps_slice
    inp = my_utils.clean_path(inp)
    opt_root = my_utils.clean_path(opt_root)
    if(os.path.exists(inp)==False):
        yield "输入路径不存在",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
        return
    if os.path.isfile(inp):n_parts=1
    elif os.path.isdir(inp):pass
    else:
        yield "输入路径存在但既不是文件也不是文件夹",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
        return
    if (ps_slice == []):
        for i_part in range(n_parts):
            cmd = '"%s" tools/slice_audio.py "%s" "%s" %s %s %s %s %s %s %s %s %s''' % (python_exec,inp, opt_root, threshold, min_length, min_interval, hop_size, max_sil_kept, _max, alpha, i_part, n_parts)
            print(cmd)
            p = Popen(cmd, shell=True)
            ps_slice.append(p)
        yield "切割执行中", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
        for p in ps_slice:
            p.wait()
        ps_slice=[]
        yield "切割结束",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
    else:
        yield "已有正在进行的切割任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}

def close_slice():
    global ps_slice
    if (ps_slice != []):
        for p_slice in ps_slice:
            try:
                kill_process(p_slice.pid)
            except:
                traceback.print_exc()
        ps_slice=[]
    return "已终止所有切割进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}

ps1a=[]
def open1a(inp_text,inp_wav_dir,exp_name,gpu_numbers,bert_pretrained_dir):
    global ps1a
    inp_text = my_utils.clean_path(inp_text)
    inp_wav_dir = my_utils.clean_path(inp_wav_dir)
    if (ps1a == []):
        opt_dir="%s/%s"%(exp_root,exp_name)
        config={
            "inp_text":inp_text,
            "inp_wav_dir":inp_wav_dir,
            "exp_name":exp_name,
            "opt_dir":opt_dir,
            "bert_pretrained_dir":bert_pretrained_dir,
        }
        gpu_names=gpu_numbers.split("-")
        all_parts=len(gpu_names)
        for i_part in range(all_parts):
            config.update(
                {
                    "i_part": str(i_part),
                    "all_parts": str(all_parts),
                    "_CUDA_VISIBLE_DEVICES": gpu_names[i_part],
                    "is_half": str(is_half)
                }
            )
            os.environ.update(config)
            cmd = '"%s" GPT_SoVITS/prepare_datasets/1-get-text.py'%python_exec
            print(cmd)
            p = Popen(cmd, shell=True)
            ps1a.append(p)
        yield "文本进程执行中", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
        for p in ps1a:
            p.wait()
        opt = []
        for i_part in range(all_parts):
            txt_path = "%s/2-name2text-%s.txt" % (opt_dir, i_part)
            with open(txt_path, "r", encoding="utf8") as f:
                opt += f.read().strip("\n").split("\n")
            os.remove(txt_path)
        path_text = "%s/2-name2text.txt" % opt_dir
        with open(path_text, "w", encoding="utf8") as f:
            f.write("\n".join(opt) + "\n")
        ps1a=[]
        yield "文本进程结束",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
    else:
        yield "已有正在进行的文本任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}

def close1a():
    global ps1a
    if (ps1a != []):
        for p1a in ps1a:
            try:
                kill_process(p1a.pid)
            except:
                traceback.print_exc()
        ps1a=[]
    return "已终止所有1a进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}

ps1b=[]
def open1b(inp_text,inp_wav_dir,exp_name,gpu_numbers,ssl_pretrained_dir):
    global ps1b
    inp_text = my_utils.clean_path(inp_text)
    inp_wav_dir = my_utils.clean_path(inp_wav_dir)
    if (ps1b == []):
        config={
            "inp_text":inp_text,
            "inp_wav_dir":inp_wav_dir,
            "exp_name":exp_name,
            "opt_dir":"%s/%s"%(exp_root,exp_name),
            "cnhubert_base_dir":ssl_pretrained_dir,
            "is_half": str(is_half)
        }
        gpu_names=gpu_numbers.split("-")
        all_parts=len(gpu_names)
        for i_part in range(all_parts):
            config.update(
                {
                    "i_part": str(i_part),
                    "all_parts": str(all_parts),
                    "_CUDA_VISIBLE_DEVICES": gpu_names[i_part],
                }
            )
            os.environ.update(config)
            cmd = '"%s" GPT_SoVITS/prepare_datasets/2-get-hubert-wav32k.py'%python_exec
            print(cmd)
            p = Popen(cmd, shell=True)
            ps1b.append(p)
        yield "SSL提取进程执行中", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
        for p in ps1b:
            p.wait()
        ps1b=[]
        yield "SSL提取进程结束",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
    else:
        yield "已有正在进行的SSL提取任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}

def close1b():
    global ps1b
    if (ps1b != []):
        for p1b in ps1b:
            try:
                kill_process(p1b.pid)
            except:
                traceback.print_exc()
        ps1b=[]
    return "已终止所有1b进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}

ps1c=[]
def open1c(inp_text,exp_name,gpu_numbers,pretrained_s2G_path):
    global ps1c
    inp_text = my_utils.clean_path(inp_text)
    if (ps1c == []):
        opt_dir="%s/%s"%(exp_root,exp_name)
        config={
            "inp_text":inp_text,
            "exp_name":exp_name,
            "opt_dir":opt_dir,
            "pretrained_s2G":pretrained_s2G_path,
            "s2config_path":"GPT_SoVITS/configs/s2.json",
            "is_half": str(is_half)
        }
        gpu_names=gpu_numbers.split("-")
        all_parts=len(gpu_names)
        for i_part in range(all_parts):
            config.update(
                {
                    "i_part": str(i_part),
                    "all_parts": str(all_parts),
                    "_CUDA_VISIBLE_DEVICES": gpu_names[i_part],
                }
            )
            os.environ.update(config)
            cmd = '"%s" GPT_SoVITS/prepare_datasets/3-get-semantic.py'%python_exec
            print(cmd)
            p = Popen(cmd, shell=True)
            ps1c.append(p)
        yield "语义token提取进程执行中", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
        for p in ps1c:
            p.wait()
        opt = ["item_name\tsemantic_audio"]
        path_semantic = "%s/6-name2semantic.tsv" % opt_dir
        for i_part in range(all_parts):
            semantic_path = "%s/6-name2semantic-%s.tsv" % (opt_dir, i_part)
            with open(semantic_path, "r", encoding="utf8") as f:
                opt += f.read().strip("\n").split("\n")
            os.remove(semantic_path)
        with open(path_semantic, "w", encoding="utf8") as f:
            f.write("\n".join(opt) + "\n")
        ps1c=[]
        yield "语义token提取进程结束",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
    else:
        yield "已有正在进行的语义token提取任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}

def close1c():
    global ps1c
    if (ps1c != []):
        for p1c in ps1c:
            try:
                kill_process(p1c.pid)
            except:
                traceback.print_exc()
        ps1c=[]
    return "已终止所有语义token进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
#####inp_text,inp_wav_dir,exp_name,gpu_numbers1a,gpu_numbers1Ba,gpu_numbers1c,bert_pretrained_dir,cnhubert_base_dir,pretrained_s2G
ps1abc=[]
def open1abc(inp_text,inp_wav_dir,exp_name,gpu_numbers1a,gpu_numbers1Ba,gpu_numbers1c,bert_pretrained_dir,ssl_pretrained_dir,pretrained_s2G_path):
    global ps1abc
    inp_text = my_utils.clean_path(inp_text)
    inp_wav_dir = my_utils.clean_path(inp_wav_dir)
    if (ps1abc == []):
        opt_dir="%s/%s"%(exp_root,exp_name)
        try:
            #############################1a
            path_text="%s/2-name2text.txt" % opt_dir
            if(os.path.exists(path_text)==False or (os.path.exists(path_text)==True and len(open(path_text,"r",encoding="utf8").read().strip("\n").split("\n"))<2)):
                config={
                    "inp_text":inp_text,
                    "inp_wav_dir":inp_wav_dir,
                    "exp_name":exp_name,
                    "opt_dir":opt_dir,
                    "bert_pretrained_dir":bert_pretrained_dir,
                    "is_half": str(is_half)
                }
                gpu_names=gpu_numbers1a.split("-")
                all_parts=len(gpu_names)
                for i_part in range(all_parts):
                    config.update(
                        {
                            "i_part": str(i_part),
                            "all_parts": str(all_parts),
                            "_CUDA_VISIBLE_DEVICES": gpu_names[i_part],
                        }
                    )
                    os.environ.update(config)
                    cmd = '"%s" GPT_SoVITS/prepare_datasets/1-get-text.py'%python_exec
                    print(cmd)
                    p = Popen(cmd, shell=True)
                    ps1abc.append(p)
                yield "进度:1a-ing", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
                for p in ps1abc:p.wait()

                opt = []
                for i_part in range(all_parts):#txt_path="%s/2-name2text-%s.txt"%(opt_dir,i_part)
                    txt_path = "%s/2-name2text-%s.txt" % (opt_dir, i_part)
                    with open(txt_path, "r",encoding="utf8") as f:
                        opt += f.read().strip("\n").split("\n")
                    os.remove(txt_path)
                with open(path_text, "w",encoding="utf8") as f:
                    f.write("\n".join(opt) + "\n")

            yield "进度:1a-done", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
            ps1abc=[]
            #############################1b
            config={
                "inp_text":inp_text,
                "inp_wav_dir":inp_wav_dir,
                "exp_name":exp_name,
                "opt_dir":opt_dir,
                "cnhubert_base_dir":ssl_pretrained_dir,
            }
            gpu_names=gpu_numbers1Ba.split("-")
            all_parts=len(gpu_names)
            for i_part in range(all_parts):
                config.update(
                    {
                        "i_part": str(i_part),
                        "all_parts": str(all_parts),
                        "_CUDA_VISIBLE_DEVICES": gpu_names[i_part],
                    }
                )
                os.environ.update(config)
                cmd = '"%s" GPT_SoVITS/prepare_datasets/2-get-hubert-wav32k.py'%python_exec
                print(cmd)
                p = Popen(cmd, shell=True)
                ps1abc.append(p)
            yield "进度:1a-done, 1b-ing", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
            for p in ps1abc:p.wait()
            yield "进度:1a1b-done", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
            ps1abc=[]
            #############################1c
            path_semantic = "%s/6-name2semantic.tsv" % opt_dir
            if(os.path.exists(path_semantic)==False or (os.path.exists(path_semantic)==True and os.path.getsize(path_semantic)<31)):
                config={
                    "inp_text":inp_text,
                    "exp_name":exp_name,
                    "opt_dir":opt_dir,
                    "pretrained_s2G":pretrained_s2G_path,
                    "s2config_path":"GPT_SoVITS/configs/s2.json",
                }
                gpu_names=gpu_numbers1c.split("-")
                all_parts=len(gpu_names)
                for i_part in range(all_parts):
                    config.update(
                        {
                            "i_part": str(i_part),
                            "all_parts": str(all_parts),
                            "_CUDA_VISIBLE_DEVICES": gpu_names[i_part],
                        }
                    )
                    os.environ.update(config)
                    cmd = '"%s" GPT_SoVITS/prepare_datasets/3-get-semantic.py'%python_exec
                    print(cmd)
                    p = Popen(cmd, shell=True)
                    ps1abc.append(p)
                yield "进度:1a1b-done, 1cing", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
                for p in ps1abc:p.wait()

                opt = ["item_name\tsemantic_audio"]
                for i_part in range(all_parts):
                    semantic_path = "%s/6-name2semantic-%s.tsv" % (opt_dir, i_part)
                    with open(semantic_path, "r",encoding="utf8") as f:
                        opt += f.read().strip("\n").split("\n")
                    os.remove(semantic_path)
                with open(path_semantic, "w",encoding="utf8") as f:
                    f.write("\n".join(opt) + "\n")
                yield "进度:all-done", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
            ps1abc = []
            yield "一键三连进程结束", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
        except:
            traceback.print_exc()
            close1abc()
            yield "一键三连中途报错", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
    else:
        yield "已有正在进行的一键三连任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}

def close1abc():
    global ps1abc
    if (ps1abc != []):
        for p1abc in ps1abc:
            try:
                kill_process(p1abc.pid)
            except:
                traceback.print_exc()
        ps1abc=[]
    return "已终止所有一键三连进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}

with gr.Blocks(title="GPT-SoVITS WebUI") as app:
    gr.Markdown("# <center>🌊💕🎶 XTTS 微调:2分钟语音,开启中日英16种语言真实拟声</center>")
    gr.Markdown("## <center>🌟 只需2分钟的语音,一键在线微调 最强多语种模型</center>")
    gr.Markdown("### <center>🤗 更多精彩,尽在[滔滔AI](https://www.talktalkai.com/);滔滔AI,为爱滔滔!💕</center>")

    with gr.Tabs():
        with gr.TabItem(i18n("1 - 制作数据集")):#提前随机切片防止uvr5爆内存->uvr5->slicer->asr->打标
            #gr.Markdown(value=i18n("0a-UVR5人声伴奏分离&去混响去延迟工具"))
            with gr.Row():
                if_uvr5 = gr.Checkbox(label=i18n("是否开启UVR5-WebUI"),show_label=True, visible=False)
                uvr5_info = gr.Textbox(label=i18n("UVR5进程输出信息"), visible=False)
            gr.Markdown(value=i18n("1a-语音切分工具"))
            with gr.Row():
                with gr.Row():
                    slice_inp_path=gr.Textbox(label=i18n("音频自动切分输入路径,可文件可文件夹"),info="您需要先在GPT-SoVITS-v2文件夹中上传训练音频,如jay.wav;音频时长建议大于2分钟",value="",placeholder="jay.wav")
                    slice_opt_root=gr.Textbox(label=i18n("切分后的子音频的输出根目录"),value="output/slicer_opt")
                    threshold=gr.Textbox(label=i18n("threshold:音量小于这个值视作静音的备选切割点"),value="-34")
                    min_length=gr.Textbox(label=i18n("min_length:每段最小多长,如果第一段太短一直和后面段连起来直到超过这个值"),value="4000")
                    min_interval=gr.Textbox(label=i18n("min_interval:最短切割间隔"),value="300")
                    hop_size=gr.Textbox(label=i18n("hop_size:怎么算音量曲线,越小精度越大计算量越高(不是精度越大效果越好)"),value="10")
                    max_sil_kept=gr.Textbox(label=i18n("max_sil_kept:切完后静音最多留多长"),value="500")
                with gr.Row():
                    open_slicer_button=gr.Button(i18n("1. 开启语音切割"), variant="primary",visible=True)
                    close_slicer_button=gr.Button(i18n("终止语音切割"), variant="primary",visible=False)
                    _max=gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("max:归一化后最大值多少"),value=0.9,interactive=True)
                    alpha=gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("alpha_mix:混多少比例归一化后音频进来"),value=0.25,interactive=True)
                    n_process=gr.Slider(minimum=1,maximum=n_cpu,step=1,label=i18n("切割使用的进程数"),value=4,interactive=True)
                    slicer_info = gr.Textbox(label=i18n("语音切割进程输出信息"))
            #gr.Markdown(value=i18n("0bb-语音降噪工具"))
            with gr.Row():
                open_denoise_button = gr.Button(i18n("开启语音降噪"), visible=False)
                close_denoise_button = gr.Button(i18n("终止语音降噪进程"), variant="primary",visible=False)
                denoise_input_dir=gr.Textbox(label=i18n("降噪音频文件输入文件夹"),value="", visible=False)
                denoise_output_dir=gr.Textbox(label=i18n("降噪结果输出文件夹"),value="output/denoise_opt", visible=False)
                denoise_info = gr.Textbox(label=i18n("语音降噪进程输出信息"), visible=False)
            gr.Markdown(value=i18n("1b-批量语音识别"))
            with gr.Row():
                open_asr_button = gr.Button(i18n("2. 开启离线批量ASR"), variant="primary",visible=True)
                close_asr_button = gr.Button(i18n("终止ASR进程"), variant="primary",visible=False)
                with gr.Column():
                    with gr.Row():
                        asr_inp_dir = gr.Textbox(
                            label=i18n("输入文件夹路径"),
                            value="output/slicer_opt",
                            interactive=True,
                        )
                        asr_opt_dir = gr.Textbox(
                            label       = i18n("输出文件夹路径"),
                            value       = "output/asr_opt",
                            interactive = True,
                        )
                    with gr.Row():
                        asr_model = gr.Dropdown(
                            label       = i18n("ASR 模型"),
                            choices     = list(asr_dict.keys()),
                            interactive = True,
                            value="达摩 ASR (中文)"
                        )
                        asr_size = gr.Dropdown(
                            label       = i18n("ASR 模型尺寸"),
                            choices     = ["large"],
                            interactive = True,
                            value="large"
                        )
                        asr_lang = gr.Dropdown(
                            label       = i18n("ASR 语言设置"),
                            choices     = ["zh"],
                            interactive = True,
                            value="zh"
                        )
                        lang = asr_lang
                    with gr.Row():
                        asr_info = gr.Textbox(label=i18n("ASR进程输出信息"))

                def change_lang_choices(key): #根据选择的模型修改可选的语言
                    # return gr.Dropdown(choices=asr_dict[key]['lang'])
                    return {"__type__": "update", "choices": asr_dict[key]['lang'],"value":asr_dict[key]['lang'][0]}
                def change_size_choices(key): # 根据选择的模型修改可选的模型尺寸
                    # return gr.Dropdown(choices=asr_dict[key]['size'])
                    return {"__type__": "update", "choices": asr_dict[key]['size']}
                asr_model.change(change_lang_choices, [asr_model], [asr_lang])
                asr_model.change(change_size_choices, [asr_model], [asr_size])
                
            gr.Markdown(value=i18n("1c-语音文本校对标注工具"))
            with gr.Row():
                if_label = gr.Checkbox(label=i18n("是否开启打标WebUI"),show_label=True)
                path_list = gr.Textbox(
                    label=i18n(".list标注文件的路径"),
                    value="output/asr_opt/slicer_opt.list",
                    interactive=True,
                )
                label_info = gr.Textbox(label=i18n("打标工具进程输出信息"))
            if_label.change(change_label, [if_label,path_list], [label_info])
            if_uvr5.change(change_uvr5, [if_uvr5], [uvr5_info])
            open_asr_button.click(open_asr, [asr_inp_dir, asr_opt_dir, asr_model, asr_size, asr_lang], [asr_info,open_asr_button,close_asr_button])
            close_asr_button.click(close_asr, [], [asr_info,open_asr_button,close_asr_button])
            open_slicer_button.click(open_slice, [slice_inp_path,slice_opt_root,threshold,min_length,min_interval,hop_size,max_sil_kept,_max,alpha,n_process], [slicer_info,open_slicer_button,close_slicer_button])
            close_slicer_button.click(close_slice, [], [slicer_info,open_slicer_button,close_slicer_button])
            open_denoise_button.click(open_denoise, [denoise_input_dir,denoise_output_dir], [denoise_info,open_denoise_button,close_denoise_button])
            close_denoise_button.click(close_denoise, [], [denoise_info,open_denoise_button,close_denoise_button])

        with gr.Tab("2 - XTTS模型微调"):
            inp_list_path_value = str(Path.cwd() / "output/asr_opt/slicer_opt.list")
            out_csv_path_value = str(Path.cwd() / "output.csv")
            inp_list_path = gr.Textbox(value=inp_list_path_value, label=".list文件地址")
            out_csv_path = gr.Textbox(value=out_csv_path_value, label=".csv文件地址")
            list_to_csv = gr.Button("3. 准备训练csv文件", variant="primary")
            train_csv = gr.Textbox(
                label="训练数据集csv文件",
            )
            eval_csv = gr.Textbox(
                label="评价数据集csv文件",
            )
            list_to_csv.click(convert_list_to_csv, [inp_list_path, out_csv_path], [train_csv, eval_csv])
            out_path_value = str(Path.cwd() / "finetune_models")
            out_path = gr.Textbox(value=out_path_value, label="XTTS微调模型的文件夹")
            num_epochs =  gr.Slider(
                label="训练步数 Number of epochs:",
                minimum=1,
                maximum=100,
                step=1,
                value=6,
            )
            batch_size = gr.Slider(
                label="Batch size:",
                minimum=2,
                maximum=512,
                step=1,
                value=2,
            )
            grad_acumm = gr.Slider(
                label="Grad accumulation steps:",
                minimum=1,
                maximum=128,
                step=1,
                value=1,
            )
            max_audio_length = gr.Slider(
                label="Max permitted audio size in seconds:",
                minimum=2,
                maximum=20,
                step=1,
                value=11,
                visible=False,
            )
            progress_train = gr.Label(
                label="训练进程"
            )
            logs_tts_train = gr.Textbox(
                label="训练详细信息",
                interactive=False,
            )
            app.load(read_logs, None, logs_tts_train, every=1)
            train_btn = gr.Button(value="4. 开始模型训练", variant="primary")

            def train_model(language, train_csv, eval_csv, num_epochs, batch_size, grad_acumm, output_path, max_audio_length):
                clear_gpu_cache()
                if not train_csv or not eval_csv:
                    return "You need to run the data processing step or manually set `Train CSV` and `Eval CSV` fields !", "", "", "", ""
                try:
                    # convert seconds to waveform frames
                    max_audio_length = int(max_audio_length * 22050)
                    config_path, original_xtts_checkpoint, vocab_file, exp_path, speaker_wav = train_gpt(language, num_epochs, batch_size, grad_acumm, train_csv, eval_csv, output_path=output_path, max_audio_length=max_audio_length)
                except:
                    traceback.print_exc()
                    error = traceback.format_exc()
                    return f"The training was interrupted due an error !! Please check the console to check the full error message! \n Error summary: {error}", "", "", "", ""

                # copy original files to avoid parameters changes issues
                os.system(f"cp {config_path} {exp_path}")
                os.system(f"cp {vocab_file} {exp_path}")

                ft_xtts_checkpoint = os.path.join(exp_path, "best_model.pth")
                print("Model training done!")
                clear_gpu_cache()
                return "Model training done!", config_path, vocab_file, ft_xtts_checkpoint, speaker_wav

        with gr.Tab("3 - XTTS语音合成"):
            with gr.Row():
                with gr.Column() as col1:
                    xtts_checkpoint = gr.Textbox(
                        label="XTTS checkpoint 路径",
                        value="",
                    )
                    xtts_config = gr.Textbox(
                        label="XTTS config 路径",
                        value="",
                    )

                    xtts_vocab = gr.Textbox(
                        label="XTTS vocab 路径",
                        value="",
                    )
                    progress_load = gr.Label(
                        label="模型加载进程"
                    )
                    load_btn = gr.Button(value="5. 加载已训练好的模型", variant="primary")

                with gr.Column() as col2:
                    ref_audio_names = os.listdir("output/slicer_opt")
                    ref_audio_list = [os.path.join("output/slicer_opt", ref_audio_name) for ref_audio_name in ref_audio_names]
                    speaker_reference_audio = gr.Dropdown(
                        label="请选择一条参考音频",
                        info="不同参考音频对应的合成效果不同,您可以多次尝试",
                        value=ref_audio_list[0],
                        choices = ref_audio_list
                    )
                    tts_language = gr.Dropdown(
                        label="语音合成的语言",
                        value="zh",
                        choices=[
                            "en",
                            "es",
                            "fr",
                            "de",
                            "it",
                            "pt",
                            "pl",
                            "tr",
                            "ru",
                            "nl",
                            "cs",
                            "ar",
                            "zh",
                            "hu",
                            "ko",
                            "ja",
                        ]
                    )

                    tts_text = gr.Textbox(
                        label="请填写语音合成的文本.",
                        placeholder="想说却还没说的,还很多",
                    )
                    tts_btn = gr.Button(value="6. 开启AI语音之旅吧💕", variant="primary")

                with gr.Column() as col3:
                    progress_gen = gr.Label(
                        label="语音合成进程"
                    )
                    tts_output_audio = gr.Audio(label="为您合成的专属音频.")
                    reference_audio = gr.Audio(label="您使用的参考音频")

            train_btn.click(
                fn=train_model,
                inputs=[
                    lang,
                    train_csv,
                    eval_csv,
                    num_epochs,
                    batch_size,
                    grad_acumm,
                    out_path,
                    max_audio_length,
                ],
                outputs=[progress_train, xtts_config, xtts_vocab, xtts_checkpoint, speaker_reference_audio],
            )
            
            load_btn.click(
                fn=load_model,
                inputs=[
                    xtts_checkpoint,
                    xtts_config,
                    xtts_vocab
                ],
                outputs=[progress_load],
            )

            tts_btn.click(
                fn=run_tts,
                inputs=[
                    tts_language,
                    tts_text,
                    speaker_reference_audio,
                ],
                outputs=[progress_gen, tts_output_audio, reference_audio],
            )

    gr.Markdown("### <center>注意❗:请不要生成会对个人以及组织造成侵害的内容,此程序仅供科研、学习及个人娱乐使用。请自觉合规使用此程序,程序开发者不负有任何责任。</center>")
    gr.HTML('''
        <div class="footer">
                    <p>🌊🏞️🎶 - 江水东流急,滔滔无尽声。 明·顾璘
                    </p>
        </div>
    ''')
    app.queue().launch(
        share=True,
        show_error=True,
    )