File size: 17,747 Bytes
779c9ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
import random
import sys
from pathlib import Path

import diffusers
import pyrallis
import torch
import torch.utils.checkpoint
import transformers
from PIL import Image
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration, set_seed
from diffusers import StableDiffusionXLPipeline
from huggingface_hub import hf_hub_download
from torchvision import transforms
from tqdm import tqdm

from ip_adapter import IPAdapterPlusXL
from model.dit import DiT_Llama
from model.pipeline_pit import PiTPipeline
from training.dataset import (
    PartsDataset,
)
from training.train_config import TrainConfig
from utils import vis_utils

logger = get_logger(__name__, log_level="INFO")


class Coach:
    def __init__(self, config: TrainConfig):
        self.cfg = config
        self.cfg.output_dir.mkdir(exist_ok=True, parents=True)
        (self.cfg.output_dir / "cfg.yaml").write_text(pyrallis.dump(self.cfg))
        (self.cfg.output_dir / "run.sh").write_text(f'python {Path(__file__).name} {" ".join(sys.argv)}')

        self.logging_dir = self.cfg.output_dir / "logs"
        accelerator_project_config = ProjectConfiguration(
            total_limit=2, project_dir=self.cfg.output_dir, logging_dir=self.logging_dir
        )
        self.accelerator = Accelerator(
            gradient_accumulation_steps=self.cfg.gradient_accumulation_steps,
            mixed_precision=self.cfg.mixed_precision,
            log_with=self.cfg.report_to,
            project_config=accelerator_project_config,
        )

        self.device = "cuda"

        logger.info(self.accelerator.state, main_process_only=False)
        if self.accelerator.is_local_main_process:
            transformers.utils.logging.set_verbosity_warning()
            diffusers.utils.logging.set_verbosity_info()
        else:
            transformers.utils.logging.set_verbosity_error()
            diffusers.utils.logging.set_verbosity_error()

        if self.cfg.seed is not None:
            set_seed(self.cfg.seed)

        if self.accelerator.is_main_process:
            self.logging_dir.mkdir(exist_ok=True, parents=True)

        self.weight_dtype = torch.float32
        if self.accelerator.mixed_precision == "fp16":
            self.weight_dtype = torch.float16
        elif self.accelerator.mixed_precision == "bf16":
            self.weight_dtype = torch.bfloat16

        self.prior = DiT_Llama(
            embedding_dim=2048,
            hidden_dim=self.cfg.hidden_dim,
            n_layers=self.cfg.num_layers,
            n_heads=self.cfg.num_attention_heads,
        )
        # pretty print total number of parameters in Billions
        num_params = sum(p.numel() for p in self.prior.parameters())
        print(f"Number of parameters: {num_params / 1e9:.2f}B")

        self.image_pipe = StableDiffusionXLPipeline.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0",
            torch_dtype=torch.float16,
            add_watermarker=False,
        ).to(self.device)

        ip_ckpt_path = hf_hub_download(
            repo_id="h94/IP-Adapter",
            filename="ip-adapter-plus_sdxl_vit-h.bin",
            subfolder="sdxl_models",
            local_dir="pretrained_models",
        )

        self.ip_model = IPAdapterPlusXL(
            self.image_pipe,
            "models/image_encoder",
            ip_ckpt_path,
            self.device,
            num_tokens=16,
        )

        self.image_processor = self.ip_model.clip_image_processor

        empty_image = Image.new("RGB", (256, 256), (255, 255, 255))
        zero_image = torch.Tensor(self.image_processor(empty_image)["pixel_values"][0])
        self.zero_image_embeds = self.ip_model.get_image_embeds(zero_image.unsqueeze(0), skip_uncond=True)

        self.prior_pipeline = PiTPipeline(prior=self.prior)
        self.prior_pipeline = self.prior_pipeline.to(self.accelerator.device)

        params_to_optimize = list(self.prior.parameters())

        self.optimizer = torch.optim.AdamW(
            params_to_optimize,
            lr=self.cfg.lr,
            betas=(self.cfg.adam_beta1, self.cfg.adam_beta2),
            weight_decay=self.cfg.adam_weight_decay,
            eps=self.cfg.adam_epsilon,
        )

        self.train_dataloader, self.validation_dataloader = self.get_dataloaders()

        self.prior, self.optimizer, self.train_dataloader = self.accelerator.prepare(
            self.prior, self.optimizer, self.train_dataloader
        )

        self.train_step = 0 if self.cfg.resume_from_step is None else self.cfg.resume_from_step
        print(self.train_step)

        if self.cfg.resume_from_path is not None:
            prior_state_dict = torch.load(self.cfg.resume_from_path, map_location=self.device)
            msg = self.prior.load_state_dict(prior_state_dict, strict=False)
            print(msg)

    def save_model(self, save_path):
        save_path.mkdir(exist_ok=True, parents=True)
        prior_state_dict = self.prior.state_dict()
        torch.save(prior_state_dict, save_path / "prior.ckpt")

    def unnormalize_and_pil(self, tensor):
        unnormed = tensor * torch.tensor(self.image_processor.image_std).view(3, 1, 1).to(tensor.device) + torch.tensor(
            self.image_processor.image_mean
        ).view(3, 1, 1).to(tensor.device)
        return transforms.ToPILImage()(unnormed)

    def save_images(self, image, conds, cond_sequence, target_embeds, label="", save_path=""):
        self.prior.eval()
        input_images = []
        captions = []
        for i in range(len(conds)):
            pil_image = self.unnormalize_and_pil(conds[i]).resize((self.cfg.img_size, self.cfg.img_size))
            input_images.append(pil_image)
            captions.append("Condition")
        if image is not None:
            input_images.append(self.unnormalize_and_pil(image).resize((self.cfg.img_size, self.cfg.img_size)))
            captions.append(f"Target {label}")

        seeds = range(2)
        output_images = []
        embebds_to_vis = []
        embeds_captions = []
        embebds_to_vis += [target_embeds]
        embeds_captions += ["Target Reconstruct" if image is not None else "Source Reconstruct"]
        if self.cfg.use_ref:
            embebds_to_vis += [cond_sequence[:, :16]]
            embeds_captions += ["Grid Reconstruct"]
        for embs in embebds_to_vis:
            direct_from_emb = self.ip_model.generate(image_prompt_embeds=embs, num_samples=1, num_inference_steps=50)
            output_images = output_images + direct_from_emb
        captions += embeds_captions

        for seed in seeds:
            for scale in [1, 4]:
                negative_cond_sequence = torch.zeros_like(cond_sequence)
                embeds_len = self.zero_image_embeds.shape[1]
                for i in range(0, negative_cond_sequence.shape[1], embeds_len):
                    negative_cond_sequence[:, i : i + embeds_len] = self.zero_image_embeds.detach()
                img_emb = self.prior_pipeline(
                    cond_sequence=cond_sequence,
                    negative_cond_sequence=negative_cond_sequence,
                    num_inference_steps=25,
                    num_images_per_prompt=1,
                    guidance_scale=scale,
                    generator=torch.Generator(device="cuda").manual_seed(seed),
                ).image_embeds

                for seed_2 in range(1):
                    images = self.ip_model.generate(
                        image_prompt_embeds=img_emb,
                        num_samples=1,
                        num_inference_steps=50,
                    )
                    output_images += images
                    captions.append(f"prior_s {seed}, cfg {scale}, unet_s {seed_2}")

        all_images = input_images + output_images
        gen_images = vis_utils.create_table_plot(images=all_images, captions=captions)
        gen_images.save(save_path)
        self.prior.train()

    def get_dataloaders(self) -> torch.utils.data.DataLoader:
        dataset_path = self.cfg.dataset_path
        if not isinstance(self.cfg.dataset_path, list):
            dataset_path = [self.cfg.dataset_path]
        datasets = []
        for path in dataset_path:
            datasets.append(
                PartsDataset(
                    dataset_dir=path,
                    image_processor=self.image_processor,
                    use_ref=self.cfg.use_ref,
                    max_crops=self.cfg.max_crops,
                    sketch_prob=self.cfg.sketch_prob,
                )
            )
        dataset = torch.utils.data.ConcatDataset(datasets)
        print(f"Total number of samples: {len(dataset)}")
        dataset_weights = []
        for single_dataset in datasets:
            dataset_weights.extend([len(dataset) / len(single_dataset)] * len(single_dataset))
        sampler_train = torch.utils.data.WeightedRandomSampler(
            weights=dataset_weights, num_samples=len(dataset_weights)
        )

        validation_dataset = PartsDataset(
            dataset_dir=self.cfg.val_dataset_path,
            image_processor=self.image_processor,
            use_ref=self.cfg.use_ref,
            max_crops=self.cfg.max_crops,
            sketch_prob=self.cfg.sketch_prob,
        )
        train_dataloader = torch.utils.data.DataLoader(
            dataset,
            batch_size=self.cfg.train_batch_size,
            shuffle=sampler_train is None,
            num_workers=self.cfg.num_workers,
            sampler=sampler_train,
        )

        validation_dataloader = torch.utils.data.DataLoader(
            validation_dataset,
            batch_size=1,
            shuffle=True,
            num_workers=self.cfg.num_workers,
        )
        return train_dataloader, validation_dataloader

    def train(self):
        pbar = tqdm(range(self.train_step, self.cfg.max_train_steps + 1))
        # self.log_validation()

        while self.train_step < self.cfg.max_train_steps:
            train_loss = 0.0
            self.prior.train()
            lossbin = {i: 0 for i in range(10)}
            losscnt = {i: 1e-6 for i in range(10)}

            for sample_idx, batch in enumerate(self.train_dataloader):
                with self.accelerator.accumulate(self.prior):
                    image, cond = batch

                    image = image.to(self.weight_dtype).to(self.accelerator.device)
                    if "crops" in cond:
                        for crop_ind in range(len(cond["crops"])):
                            cond["crops"][crop_ind] = (
                                cond["crops"][crop_ind].to(self.weight_dtype).to(self.accelerator.device)
                            )
                    for key in cond.keys():
                        if isinstance(cond[key], torch.Tensor):
                            cond[key] = cond[key].to(self.accelerator.device)

                    with torch.no_grad():
                        image_embeds = self.ip_model.get_image_embeds(image, skip_uncond=True)

                        b = image_embeds.size(0)
                        nt = torch.randn((b,)).to(image_embeds.device)
                        t = torch.sigmoid(nt)
                        texp = t.view([b, *([1] * len(image_embeds.shape[1:]))])
                        z_1 = torch.randn_like(image_embeds)
                        noisy_latents = (1 - texp) * image_embeds + texp * z_1

                        target = image_embeds

                        # At some prob uniformly sample across the entire batch so the model also learns to work with unpadded inputs
                        if random.random() < 0.5:
                            crops_to_keep = random.randint(1, len(cond["crops"]))
                            cond["crops"] = cond["crops"][:crops_to_keep]
                        cond_crops = cond["crops"]

                        image_embed_inputs = []
                        for crop_ind in range(len(cond_crops)):
                            image_embed_inputs.append(
                                self.ip_model.get_image_embeds(cond_crops[crop_ind], skip_uncond=True)
                            )
                        input_sequence = torch.cat(image_embed_inputs, dim=1)

                    loss = 0
                    image_feat_seq = input_sequence

                    model_pred = self.prior(
                        noisy_latents,
                        t=t,
                        cond=image_feat_seq,
                    )

                    batchwise_prior_loss = ((z_1 - target.float() - model_pred.float()) ** 2).mean(
                        dim=list(range(1, len(target.shape)))
                    )
                    tlist = batchwise_prior_loss.detach().cpu().reshape(-1).tolist()
                    ttloss = [(tv, tloss) for tv, tloss in zip(t, tlist)]

                    # count based on t
                    for t, l in ttloss:
                        lossbin[int(t * 10)] += l
                        losscnt[int(t * 10)] += 1

                    loss += batchwise_prior_loss.mean()
                    # Gather the losses across all processes for logging (if we use distributed training).
                    avg_loss = self.accelerator.gather(loss.repeat(self.cfg.train_batch_size)).mean()
                    train_loss += avg_loss.item() / self.cfg.gradient_accumulation_steps

                    # Backprop
                    self.accelerator.backward(loss)
                    if self.accelerator.sync_gradients:
                        self.accelerator.clip_grad_norm_(self.prior.parameters(), self.cfg.max_grad_norm)
                    self.optimizer.step()
                    self.optimizer.zero_grad()

                # Checks if the accelerator has performed an optimization step behind the scenes
                if self.accelerator.sync_gradients:
                    pbar.update(1)
                    self.train_step += 1
                    train_loss = 0.0

                    if self.accelerator.is_main_process:

                        if self.train_step % self.cfg.checkpointing_steps == 1:
                            if self.accelerator.is_main_process:
                                save_path = self.cfg.output_dir  # / f"learned_prior.pth"
                                self.save_model(save_path)
                                logger.info(f"Saved state to {save_path}")
                        pbar.set_postfix(**{"loss": loss.cpu().detach().item()})

                        if self.cfg.log_image_frequency > 0 and (self.train_step % self.cfg.log_image_frequency == 1):
                            image_save_path = self.cfg.output_dir / "images" / f"{self.train_step}_step_images.jpg"
                            image_save_path.parent.mkdir(exist_ok=True, parents=True)
                            # Apply the full diffusion process
                            conds_list = []
                            for crop_ind in range(len(cond["crops"])):
                                conds_list.append(cond["crops"][crop_ind][0])

                            self.save_images(
                                image=image[0],
                                conds=conds_list,
                                cond_sequence=image_feat_seq[:1],
                                target_embeds=target[:1],
                                save_path=image_save_path,
                            )

                    if self.cfg.log_validation > 0 and (self.train_step % self.cfg.log_validation == 0):
                        # Run validation
                        self.log_validation()

                    if self.train_step >= self.cfg.max_train_steps:
                        break

            self.train_dataloader, self.validation_dataloader = self.get_dataloaders()
        pbar.close()

    def log_validation(self):
        for sample_idx, batch in tqdm(enumerate(self.validation_dataloader)):
            image, cond = batch
            image = image.to(self.weight_dtype).to(self.accelerator.device)
            if "crops" in cond:
                for crop_ind in range(len(cond["crops"])):
                    cond["crops"][crop_ind] = cond["crops"][crop_ind].to(self.weight_dtype).to(self.accelerator.device)
            for key in cond.keys():
                if isinstance(cond[key], torch.Tensor):
                    cond[key] = cond[key].to(self.accelerator.device)

            with torch.no_grad():
                target_embeds = self.ip_model.get_image_embeds(image, skip_uncond=True)
                crops_to_keep = random.randint(1, len(cond["crops"]))
                cond["crops"] = cond["crops"][:crops_to_keep]
                cond_crops = cond["crops"]
                image_embed_inputs = []
                for crop_ind in range(len(cond_crops)):
                    image_embed_inputs.append(self.ip_model.get_image_embeds(cond_crops[crop_ind], skip_uncond=True))
                input_sequence = torch.cat(image_embed_inputs, dim=1)

            image_save_path = self.cfg.output_dir / "val_images" / f"{self.train_step}_step_{sample_idx}_images.jpg"
            image_save_path.parent.mkdir(exist_ok=True, parents=True)

            save_target_image = image[0]
            conds_list = []
            for crop_ind in range(len(cond["crops"])):
                conds_list.append(cond["crops"][crop_ind][0])

            # Apply the full diffusion process
            self.save_images(
                image=save_target_image,
                conds=conds_list,
                cond_sequence=input_sequence[:1],
                target_embeds=target_embeds[:1],
                save_path=image_save_path,
            )

            if sample_idx == self.cfg.n_val_images:
                break