Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --- Imports ---
|
2 |
+
import os
|
3 |
+
import json
|
4 |
+
import gradio as gr
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import tempfile
|
7 |
+
import io
|
8 |
+
import re
|
9 |
+
import networkx as nx
|
10 |
+
from datetime import datetime
|
11 |
+
from contextlib import redirect_stdout
|
12 |
+
from langchain_community.chat_models import ChatOpenAI
|
13 |
+
from langchain.agents import initialize_agent, Tool, AgentType
|
14 |
+
from langchain_community.tools import DuckDuckGoSearchRun
|
15 |
+
import openai
|
16 |
+
|
17 |
+
# --- Pre-create rating log file ---
|
18 |
+
log_filename = "rating_log.txt"
|
19 |
+
if not os.path.exists(log_filename):
|
20 |
+
with open(log_filename, "w", encoding="utf-8") as f:
|
21 |
+
f.write("=== Rating Log Initialized ===\n")
|
22 |
+
|
23 |
+
# --- Setup API keys ---
|
24 |
+
openai_api_key = os.environ.get("OPENAI_API_KEY")
|
25 |
+
if not openai_api_key:
|
26 |
+
raise ValueError("OPENAI_API_KEY environment variable is not set.")
|
27 |
+
llm = ChatOpenAI(temperature=0, model="gpt-4", openai_api_key=openai_api_key)
|
28 |
+
|
29 |
+
openrouter_key = os.environ.get("OpenRouter")
|
30 |
+
openai_rater = openai.OpenAI(api_key=openrouter_key, base_url="https://openrouter.ai/api/v1")
|
31 |
+
|
32 |
+
# --- Helpers ---
|
33 |
+
def safe_file_or_none(path):
|
34 |
+
return path if isinstance(path, str) and os.path.isfile(path) else None
|
35 |
+
|
36 |
+
def remove_ansi(text):
|
37 |
+
return re.sub(r'\x1b\[[0-9;]*m', '', text)
|
38 |
+
|
39 |
+
# --- Rating function ---
|
40 |
+
def rate_answer_rater(question, final_answer):
|
41 |
+
try:
|
42 |
+
prompt = f"Rate this answer 1-5 stars with explanation:\n\n{final_answer}"
|
43 |
+
response = openai_rater.chat.completions.create(
|
44 |
+
model="mistral/ministral-8b",
|
45 |
+
messages=[{"role": "user", "content": prompt}]
|
46 |
+
)
|
47 |
+
rating_text = response.choices[0].message.content.strip()
|
48 |
+
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
49 |
+
with open("rating_log.txt", "a", encoding="utf-8") as log_file:
|
50 |
+
log_file.write(f"\n---\nTimestamp: {timestamp}\nQuestion: {question}\nAnswer: {final_answer}\nRating Response: {rating_text}\n")
|
51 |
+
return rating_text
|
52 |
+
except Exception as e:
|
53 |
+
return f"Rating error: {e}"
|
54 |
+
|
55 |
+
# --- Word map generation ---
|
56 |
+
def generate_wordmap(text):
|
57 |
+
try:
|
58 |
+
from wordcloud import WordCloud
|
59 |
+
wc = WordCloud(width=800, height=400, background_color="white").generate(text)
|
60 |
+
tmpfile = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
|
61 |
+
wc.to_file(tmpfile.name)
|
62 |
+
return tmpfile.name
|
63 |
+
except Exception as e:
|
64 |
+
return None
|
65 |
+
|
66 |
+
# --- Reasoning tree generation ---
|
67 |
+
def generate_reasoning_tree(trace: str):
|
68 |
+
try:
|
69 |
+
G = nx.DiGraph()
|
70 |
+
step = 0
|
71 |
+
last_node = "Start"
|
72 |
+
G.add_node(last_node)
|
73 |
+
|
74 |
+
for line in trace.splitlines():
|
75 |
+
if line.strip():
|
76 |
+
step += 1
|
77 |
+
node_id = f"Step_{step}"
|
78 |
+
G.add_node(node_id, label=line)
|
79 |
+
G.add_edge(last_node, node_id)
|
80 |
+
last_node = node_id
|
81 |
+
|
82 |
+
pos = nx.spring_layout(G)
|
83 |
+
fig, ax = plt.subplots(figsize=(10, 5))
|
84 |
+
labels = nx.get_node_attributes(G, 'label')
|
85 |
+
nx.draw(G, pos, with_labels=False, node_size=3000, node_color='lightblue', ax=ax)
|
86 |
+
nx.draw_networkx_labels(G, pos, labels=labels, font_size=8, ax=ax)
|
87 |
+
tmpfile = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
|
88 |
+
plt.savefig(tmpfile.name)
|
89 |
+
plt.close(fig)
|
90 |
+
return tmpfile.name
|
91 |
+
except Exception as e:
|
92 |
+
return None
|
93 |
+
|
94 |
+
# --- Define specialist tools ---
|
95 |
+
|
96 |
+
def simple_tool(prompt_prefix):
|
97 |
+
return lambda query: llm.predict(f"{prompt_prefix}\n\n{query}")
|
98 |
+
|
99 |
+
legal_tool = Tool("LegalAnalystAgent", simple_tool("You are a legal analyst."), "Legal analysis")
|
100 |
+
financial_tool = Tool("FinancialMarketsAgent", simple_tool("You are a financial markets analyst."), "Financial insights")
|
101 |
+
lending_tool = Tool("LendingSpecialistAgent", simple_tool("You are a lending specialist."), "Lending guidance")
|
102 |
+
credit_tool = Tool("CreditSpecialistAgent", simple_tool("You are a credit specialist."), "Credit evaluation")
|
103 |
+
research_agent = DuckDuckGoSearchRun()
|
104 |
+
research_tool = Tool("ResearchAgent", research_agent.run, "Web search")
|
105 |
+
|
106 |
+
planner_tools = [
|
107 |
+
research_tool,
|
108 |
+
legal_tool,
|
109 |
+
financial_tool,
|
110 |
+
lending_tool,
|
111 |
+
credit_tool
|
112 |
+
]
|
113 |
+
|
114 |
+
planner_agent = initialize_agent(
|
115 |
+
planner_tools,
|
116 |
+
llm=llm,
|
117 |
+
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
|
118 |
+
verbose=True
|
119 |
+
)
|
120 |
+
|
121 |
+
# --- Main agent logic ---
|
122 |
+
def agent_query(user_input, selected_agent, retry_threshold):
|
123 |
+
try:
|
124 |
+
f = io.StringIO()
|
125 |
+
with redirect_stdout(f):
|
126 |
+
|
127 |
+
if selected_agent == "Auto":
|
128 |
+
result = planner_agent.run(user_input)
|
129 |
+
trace_output = f.getvalue()
|
130 |
+
else:
|
131 |
+
agent_map = {
|
132 |
+
"ResearchAgent": research_agent.run,
|
133 |
+
"LegalAnalystAgent": legal_tool.func,
|
134 |
+
"FinancialMarketsAgent": financial_tool.func,
|
135 |
+
"LendingSpecialistAgent": lending_tool.func,
|
136 |
+
"CreditSpecialistAgent": credit_tool.func
|
137 |
+
}
|
138 |
+
agent_fn = agent_map.get(selected_agent)
|
139 |
+
result = agent_fn(user_input) if agent_fn else "Invalid agent selected."
|
140 |
+
trace_output = f.getvalue()
|
141 |
+
|
142 |
+
final_answer_str = result or "(No answer produced.)"
|
143 |
+
if "Final Answer:" not in trace_output:
|
144 |
+
trace_output += f"\n\nFinal Answer: {final_answer_str}"
|
145 |
+
|
146 |
+
wordmap_path = generate_wordmap(trace_output)
|
147 |
+
reasoning_tree_path = generate_reasoning_tree(remove_ansi(trace_output))
|
148 |
+
|
149 |
+
rating_text = rate_answer_rater(user_input, final_answer_str)
|
150 |
+
|
151 |
+
return (
|
152 |
+
trace_output + f"\n\n⭐ Rating: {rating_text}",
|
153 |
+
wordmap_path,
|
154 |
+
reasoning_tree_path,
|
155 |
+
gr.update(visible=bool(wordmap_path)),
|
156 |
+
gr.update(visible=bool(reasoning_tree_path))
|
157 |
+
)
|
158 |
+
|
159 |
+
except Exception as e:
|
160 |
+
return f"Error: {e}", None, None, gr.update(visible=False), gr.update(visible=False)
|
161 |
+
|
162 |
+
# --- Gradio UI ---
|
163 |
+
|
164 |
+
demo = gr.Blocks(theme=gr.themes.Glass())
|
165 |
+
|
166 |
+
with demo:
|
167 |
+
gr.Markdown("# Financial Services Multi-Agent Assistant")
|
168 |
+
gr.Markdown("Select an agent or use Auto for automatic routing.")
|
169 |
+
|
170 |
+
with gr.Row():
|
171 |
+
input_box = gr.Textbox(label="Your Question")
|
172 |
+
with gr.Row():
|
173 |
+
agent_selector = gr.Dropdown(label="Choose Agent", choices=[
|
174 |
+
"Auto", "ResearchAgent", "LegalAnalystAgent",
|
175 |
+
"FinancialMarketsAgent", "LendingSpecialistAgent", "CreditSpecialistAgent"
|
176 |
+
], value="Auto")
|
177 |
+
with gr.Row():
|
178 |
+
retry_slider = gr.Slider(label="Retry Rating Threshold", minimum=1.0, maximum=5.0, step=0.1, value=4.0)
|
179 |
+
|
180 |
+
with gr.Row():
|
181 |
+
submit_btn = gr.Button("Submit")
|
182 |
+
download_btn = gr.File(label="Download Rating Log")
|
183 |
+
|
184 |
+
with gr.Row():
|
185 |
+
output_text = gr.Textbox(label="Agent Reasoning + Final Answer", lines=20)
|
186 |
+
|
187 |
+
with gr.Row():
|
188 |
+
output_wordmap = gr.Image(label="Word Map", visible=True)
|
189 |
+
output_tree_image = gr.Image(label="Reasoning Tree", visible=True)
|
190 |
+
|
191 |
+
submit_btn.click(
|
192 |
+
fn=agent_query,
|
193 |
+
inputs=[input_box, agent_selector, retry_slider],
|
194 |
+
outputs=[
|
195 |
+
output_text, output_wordmap, output_tree_image,
|
196 |
+
output_wordmap, output_tree_image
|
197 |
+
]
|
198 |
+
)
|
199 |
+
|
200 |
+
demo.load(lambda: "rating_log.txt", None, download_btn)
|
201 |
+
|
202 |
+
if __name__ == "__main__":
|
203 |
+
demo.launch(share=True)
|