File size: 2,524 Bytes
8b0fb3d
 
 
 
d675a30
 
0b8af4e
8b0fb3d
 
 
5ffd197
8b0fb3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d675a30
 
805e964
a4076e5
805e964
8b0fb3d
0b8af4e
805e964
 
9c0fe4b
8b0fb3d
805e964
9c0fe4b
8b0fb3d
9c0fe4b
 
 
 
 
 
 
 
 
 
 
8b0fb3d
9c0fe4b
 
8b0fb3d
0b8af4e
8b0fb3d
9c0fe4b
d941a3f
0b8af4e
9c0fe4b
8b0fb3d
 
 
805e964
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import base64
import os
from datetime import datetime
from openai import OpenAI
import gradio as gr

# === OpenAI API Setup ===
openai_api_key = os.environ.get("OPENAI_API_KEY")
if not openai_api_key:
    raise ValueError("OPENAI_API_KEY environment variable is not set.")

client = OpenAI(api_key=openai_api_key)

# === Prompts ===
system_prompt = (
    "You are a detail-oriented assistant that specializes in transcribing and polishing "
    "handwritten notes from images. Your goal is to turn rough, casual, or handwritten "
    "content into clean, structured, and professional-looking text that sounds like it "
    "was written by a human—not an AI. You do not include icons, emojis, or suggest next "
    "steps unless explicitly instructed."
)

user_prompt_template = (
    "You will receive an image of handwritten notes. Transcribe the content accurately, "
    "correcting any spelling or grammar issues. Then, organize it clearly with headings, "
    "bullet points, and proper formatting. Maintain the original intent and voice of the "
    "author, but enhance readability and flow. Do not add embellishments or AI-style phrasing."
)

# === Encode uploaded bytes ===
def encode_image_to_base64(file_bytes):
    return base64.b64encode(file_bytes).decode("utf-8")

# === Transcription logic ===
def transcribe_image(file_bytes):
    if not file_bytes:
        return "No image uploaded."

    encoded = encode_image_to_base64(file_bytes)
    image_url = f"data:image/jpeg;base64,{encoded}"

    response = client.chat.completions.create(
        model="gpt-4-turbo",
        messages=[
            {"role": "system", "content": system_prompt},
            {"role": "user", "content": [
                {"type": "text", "text": user_prompt_template},
                {"type": "image_url", "image_url": {"url": image_url}}
            ]}
        ],
        max_tokens=1500
    )

    timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    return f"🗓️ Transcribed on: {timestamp}\n\n{response.choices[0].message.content}"

# === Interface ===
with gr.Blocks() as app:
    gr.Markdown("## Handwritten Note Transcriber\nUpload a handwritten note image for professional transcription.")
    input_file = gr.File(label="Upload image", type="binary", file_types=[".jpg", ".jpeg", ".png"])
    output_text = gr.Textbox(label="Transcription Output", lines=30)
    input_file.change(fn=transcribe_image, inputs=input_file, outputs=output_text)

# === Launch ===
if __name__ == "__main__":
    app.launch()