Spaces:
Sleeping
Sleeping
File size: 7,802 Bytes
be120c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import base64
import os
from datetime import datetime
from openai import OpenAI
import gradio as gr
import oci
import io
import re
import tempfile
from collections import Counter
import matplotlib.pyplot as plt
from wordcloud import WordCloud
# === OpenAI API Setup ===
openai_api_key = os.environ.get("OPENAI_API_KEY")
if not openai_api_key:
raise ValueError("OPENAI_API_KEY environment variable is not set.")
client = OpenAI(api_key=openai_api_key)
# === OCI Object Storage Setup ===
oci_config = {
"user": os.environ.get("OCI_USER"),
"tenancy": os.environ.get("OCI_TENANCY"),
"fingerprint": os.environ.get("OCI_FINGERPRINT"),
"region": os.environ.get("OCI_REGION"),
"key_content": os.environ.get("OCI_PRIVATE_KEY")
}
namespace = os.environ.get("OCI_NAMESPACE")
bucket_name = os.environ.get("OCI_BUCKET_NAME")
try:
object_storage = oci.object_storage.ObjectStorageClient(oci_config)
except Exception as e:
print("Failed to initialize OCI Object Storage client:", e)
# === Prompts ===
system_prompt = (
"You are a detail-oriented assistant that specializes in transcribing and polishing "
"handwritten notes from images. Your goal is to turn rough, casual, or handwritten "
"content into clean, structured, and professional-looking text that sounds like it "
"was written by a human—not an AI. You do not include icons, emojis, or suggest next "
"steps unless explicitly instructed."
)
user_prompt_template = (
"You will receive an image of handwritten notes. Transcribe the content accurately, "
"correcting any spelling or grammar issues. Then, organize it clearly with headings, "
"bullet points, and proper formatting. Maintain the original intent and voice of the "
"author, but enhance readability and flow. Do not add embellishments or AI-style phrasing."
)
# === Encode uploaded bytes ===
def encode_image_to_base64(file_bytes):
return base64.b64encode(file_bytes).decode("utf-8")
# === Upload transcription result to OCI ===
def upload_to_object_storage(user_name, text):
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"{user_name.replace(' ', '_')}_{timestamp}.txt"
object_storage.put_object(
namespace_name=namespace,
bucket_name=bucket_name,
object_name=filename,
put_object_body=text.encode("utf-8")
)
return filename
# === List object storage ===
def list_object_store():
try:
objects = object_storage.list_objects(namespace, bucket_name)
return [obj.name for obj in objects.data.objects if obj.name.endswith(".txt")]
except Exception as e:
return [f"Failed to list objects: {str(e)}"]
# === View file contents ===
def view_transcription(file_name):
try:
response = object_storage.get_object(namespace, bucket_name, file_name)
return response.data.text
except Exception as e:
return f"Failed to load file: {str(e)}"
# === Analyze content with OpenAI ===
def summarize_selected_files(file_list):
combined_text = ""
for name in file_list:
combined_text += view_transcription(name) + "\n"
if not combined_text.strip():
return "No content found."
response = client.chat.completions.create(
model="gpt-4-turbo",
messages=[
{"role": "system", "content": "You are a summarization expert."},
{"role": "user", "content": "Please summarize the following transcriptions in detail:\n" + combined_text}
],
max_tokens=1500
)
return response.choices[0].message.content
def recommend_from_selected_files(file_list):
combined_text = ""
for name in file_list:
combined_text += view_transcription(name) + "\n"
if not combined_text.strip():
return "No content found."
response = client.chat.completions.create(
model="gpt-4-turbo",
messages=[
{"role": "system", "content": "You are an operations consultant."},
{"role": "user", "content": "Please recommend next steps based on these transcriptions:\n" + combined_text}
],
max_tokens=1500
)
return response.choices[0].message.content
# === Generate word cloud from selected files ===
def generate_word_map_from_files(file_list):
combined_text = ""
for name in file_list:
combined_text += view_transcription(name) + "\n"
if not combined_text.strip():
return "No content found."
wordcloud = WordCloud(width=800, height=400, background_color='white').generate(combined_text)
plt.figure(figsize=(10, 5))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis("off")
buf = io.BytesIO()
plt.savefig(buf, format="png")
buf.seek(0)
# Upload image to object storage
filename = f"wordcloud_{datetime.now().strftime('%Y%m%d_%H%M%S')}.png"
object_storage.put_object(
namespace_name=namespace,
bucket_name=bucket_name,
object_name=filename,
put_object_body=buf.getvalue()
)
return buf
# === Transcription logic ===
def transcribe_image(file_bytes, user_name):
if not file_bytes:
return "No image uploaded."
encoded = encode_image_to_base64(file_bytes)
image_url = f"data:image/jpeg;base64,{encoded}"
response = client.chat.completions.create(
model="gpt-4-turbo",
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": [
{"type": "text", "text": user_prompt_template},
{"type": "image_url", "image_url": {"url": image_url}}
]}
],
max_tokens=1500
)
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
result = f"🗓️ Transcribed on: {timestamp}\n\n{response.choices[0].message.content}"
upload_to_object_storage(user_name, result)
return result
# === Gradio Interface ===
with gr.Blocks() as app:
gr.Markdown("## Handwritten Note Transcriber & Analyzer")
with gr.Row():
user_dropdown = gr.Dropdown(
choices=["Jim Goodwin", "Zahabiya Ali rampurawala", "Keith Gauvin"],
label="Who is uploading this?"
)
input_file = gr.File(label="Upload image", type="binary", file_types=[".jpg", ".jpeg", ".png"])
output_text = gr.Textbox(label="Transcription Output", lines=30)
input_file.change(fn=transcribe_image, inputs=[input_file, user_dropdown], outputs=output_text)
gr.Markdown("### List Object Store Contents")
gr.Button("List Object Store").click(fn=lambda: "\n".join(list_object_store()), outputs=gr.Textbox(label="Object Store Contents"))
gr.Markdown("### View Transcription")
file_selector = gr.Dropdown(choices=list_object_store(), label="Select transcription file")
view_output = gr.Textbox(label="File Content")
file_selector.change(fn=view_transcription, inputs=file_selector, outputs=view_output)
gr.Markdown("### Summarize or Recommend")
file_multiselect = gr.Dropdown(choices=list_object_store(), label="Select files to analyze", multiselect=True)
summary_output = gr.Textbox(label="Summarize Selected Transcriptions")
rec_output = gr.Textbox(label="Recommended Next Steps")
gr.Button("Summarize Files").click(fn=summarize_selected_files, inputs=file_multiselect, outputs=summary_output)
gr.Button("Recommend from Files").click(fn=recommend_from_selected_files, inputs=file_multiselect, outputs=rec_output)
gr.Markdown("### Word Cloud from Files")
wordcloud_image = gr.Image(label="Word Cloud")
gr.Button("Generate Word Map from Files").click(
fn=generate_word_map_from_files,
inputs=file_multiselect,
outputs=wordcloud_image
)
# === Launch App ===
if __name__ == "__main__":
app.launch(share=True) |