Spaces:
Sleeping
Sleeping
import base64 | |
import os | |
from datetime import datetime | |
from openai import OpenAI | |
import gradio as gr | |
import oci | |
# === OpenAI API Setup === | |
openai_api_key = os.environ.get("OPENAI_API_KEY") | |
if not openai_api_key: | |
raise ValueError("OPENAI_API_KEY environment variable is not set.") | |
client = OpenAI(api_key=openai_api_key) | |
# === OCI Object Storage Setup === | |
oci_config = { | |
"user": os.environ.get("OCI_USER"), | |
"tenancy": os.environ.get("OCI_TENANCY"), | |
"fingerprint": os.environ.get("OCI_FINGERPRINT"), | |
"region": os.environ.get("OCI_REGION"), | |
"key_content": os.environ.get("OCI_PRIVATE_KEY") | |
} | |
# Optional: access OCI Object Storage (if needed) | |
try: | |
object_storage = oci.object_storage.ObjectStorageClient(oci_config) | |
except Exception as e: | |
print("Failed to initialize OCI Object Storage client:", e) | |
# === Prompts === | |
system_prompt = ( | |
"You are a detail-oriented assistant that specializes in transcribing and polishing " | |
"handwritten notes from images. Your goal is to turn rough, casual, or handwritten " | |
"content into clean, structured, and professional-looking text that sounds like it " | |
"was written by a human—not an AI. You do not include icons, emojis, or suggest next " | |
"steps unless explicitly instructed." | |
) | |
user_prompt_template = ( | |
"You will receive an image of handwritten notes. Transcribe the content accurately, " | |
"correcting any spelling or grammar issues. Then, organize it clearly with headings, " | |
"bullet points, and proper formatting. Maintain the original intent and voice of the " | |
"author, but enhance readability and flow. Do not add embellishments or AI-style phrasing." | |
) | |
# === Encode uploaded bytes === | |
def encode_image_to_base64(file_bytes): | |
return base64.b64encode(file_bytes).decode("utf-8") | |
# === Transcription logic === | |
def transcribe_image(file_bytes): | |
if not file_bytes: | |
return "No image uploaded." | |
encoded = encode_image_to_base64(file_bytes) | |
image_url = f"data:image/jpeg;base64,{encoded}" | |
response = client.chat.completions.create( | |
model="gpt-4-turbo", | |
messages=[ | |
{"role": "system", "content": system_prompt}, | |
{"role": "user", "content": [ | |
{"type": "text", "text": user_prompt_template}, | |
{"type": "image_url", "image_url": {"url": image_url}} | |
]} | |
], | |
max_tokens=1500 | |
) | |
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
return f"🗓️ Transcribed on: {timestamp}\n\n{response.choices[0].message.content}" | |
# === Gradio Interface === | |
with gr.Blocks() as app: | |
gr.Markdown("## Handwritten Note Transcriber\nUpload a handwritten note image for professional transcription.") | |
input_file = gr.File(label="Upload image", type="binary", file_types=[".jpg", ".jpeg", ".png"]) | |
output_text = gr.Textbox(label="Transcription Output", lines=30) | |
input_file.change(fn=transcribe_image, inputs=input_file, outputs=output_text) | |
# === Launch App === | |
if __name__ == "__main__": | |
app.launch(share=True) | |