NotesTranscriber / app.py.old3
kgauvin603's picture
Rename app.py to app.py.old3
4d2a1db verified
#
import base64
import os
from datetime import datetime
from openai import OpenAI
import gradio as gr
import oci
# === OpenAI API Setup ===
openai_api_key = os.environ.get("OPENAI_API_KEY")
if not openai_api_key:
raise ValueError("OPENAI_API_KEY environment variable is not set.")
client = OpenAI(api_key=openai_api_key)
# === OCI Object Storage Setup ===
oci_config = {
"user": os.environ.get("OCI_USER"),
"tenancy": os.environ.get("OCI_TENANCY"),
"fingerprint": os.environ.get("OCI_FINGERPRINT"),
"region": os.environ.get("OCI_REGION"),
"key_content": os.environ.get("OCI_PRIVATE_KEY")
}
namespace = os.environ.get("OCI_NAMESPACE")
bucket_name = os.environ.get("OCI_BUCKET_NAME")
try:
object_storage = oci.object_storage.ObjectStorageClient(oci_config)
except Exception as e:
print("Failed to initialize OCI Object Storage client:", e)
# === Prompts ===
system_prompt = (
"You are a detail-oriented assistant that specializes in transcribing and polishing "
"handwritten notes from images. Your goal is to turn rough, casual, or handwritten "
"content into clean, structured, and professional-looking text that sounds like it "
"was written by a human—not an AI. You do not include icons, emojis, or suggest next "
"steps unless explicitly instructed."
)
user_prompt_template = (
"You will receive an image of handwritten notes. Transcribe the content accurately, "
"correcting any spelling or grammar issues. Then, organize it clearly with headings, "
"bullet points, and proper formatting. Maintain the original intent and voice of the "
"author, but enhance readability and flow. Do not add embellishments or AI-style phrasing."
)
# === Encode uploaded bytes ===
def encode_image_to_base64(file_bytes):
return base64.b64encode(file_bytes).decode("utf-8")
# === Upload transcription result to OCI ===
def upload_to_object_storage(user_name, text):
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"{user_name.replace(' ', '_')}_{timestamp}.txt"
object_storage.put_object(
namespace_name=namespace,
bucket_name=bucket_name,
object_name=filename,
put_object_body=text.encode("utf-8")
)
return filename
# === List files in object storage ===
def list_object_store():
try:
objects = object_storage.list_objects(namespace, bucket_name)
return "\n".join([obj.name for obj in objects.data.objects])
except Exception as e:
return f"Failed to list objects: {str(e)}"
# === Transcription logic ===
def transcribe_image(file_bytes, user_name):
if not file_bytes:
return "No image uploaded."
encoded = encode_image_to_base64(file_bytes)
image_url = f"data:image/jpeg;base64,{encoded}"
response = client.chat.completions.create(
model="gpt-4-turbo",
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": [
{"type": "text", "text": user_prompt_template},
{"type": "image_url", "image_url": {"url": image_url}}
]}
],
max_tokens=1500
)
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
result = f"🗓️ Transcribed on: {timestamp}\n\n{response.choices[0].message.content}"
upload_to_object_storage(user_name, result)
return result
# === Gradio Interface ===
with gr.Blocks() as app:
gr.Markdown("## Handwritten Note Transcriber\nUpload a handwritten note image for professional transcription and auto-upload to OCI Object Storage.")
with gr.Row():
user_dropdown = gr.Dropdown(
choices=["Jim Goodwin", "Zahabiya Ali rampurawala", "Keith Gauvin"],
label="Who is uploading this?"
)
input_file = gr.File(label="Upload image", type="binary", file_types=[".jpg", ".jpeg", ".png"])
output_text = gr.Textbox(label="Transcription Output", lines=30)
input_file.change(fn=transcribe_image, inputs=[input_file, user_dropdown], outputs=output_text)
gr.Button("List Object Store").click(fn=list_object_store, outputs=gr.Textbox(label="Object Store Contents"))
# === Launch App ===
if __name__ == "__main__":
app.launch(share=True)