kgauvin603 commited on
Commit
5a1dd3c
·
verified ·
1 Parent(s): 4d2a1db

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +218 -0
app.py ADDED
@@ -0,0 +1,218 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import base64
2
+ import os
3
+ from datetime import datetime, timedelta
4
+ from openai import OpenAI
5
+ import gradio as gr
6
+ import oci
7
+ import io
8
+ import re
9
+ from collections import Counter
10
+ import matplotlib.pyplot as plt
11
+ from wordcloud import WordCloud
12
+
13
+ # === OpenAI API Setup ===
14
+ openai_api_key = os.environ.get("OPENAI_API_KEY")
15
+ if not openai_api_key:
16
+ raise ValueError("OPENAI_API_KEY environment variable is not set.")
17
+
18
+ client = OpenAI(api_key=openai_api_key)
19
+
20
+ # === OCI Object Storage Setup ===
21
+ oci_config = {
22
+ "user": os.environ.get("OCI_USER"),
23
+ "tenancy": os.environ.get("OCI_TENANCY"),
24
+ "fingerprint": os.environ.get("OCI_FINGERPRINT"),
25
+ "region": os.environ.get("OCI_REGION"),
26
+ "key_content": os.environ.get("OCI_PRIVATE_KEY")
27
+ }
28
+
29
+ namespace = os.environ.get("OCI_NAMESPACE")
30
+ bucket_name = os.environ.get("OCI_BUCKET_NAME")
31
+
32
+ try:
33
+ object_storage = oci.object_storage.ObjectStorageClient(oci_config)
34
+ except Exception as e:
35
+ print("Failed to initialize OCI Object Storage client:", e)
36
+
37
+ # === Prompts ===
38
+ system_prompt = (
39
+ "You are a detail-oriented assistant that specializes in transcribing and polishing "
40
+ "handwritten notes from images. Your goal is to turn rough, casual, or handwritten "
41
+ "content into clean, structured, and professional-looking text that sounds like it "
42
+ "was written by a human—not an AI. You do not include icons, emojis, or suggest next "
43
+ "steps unless explicitly instructed."
44
+ )
45
+
46
+ user_prompt_template = (
47
+ "You will receive an image of handwritten notes. Transcribe the content accurately, "
48
+ "correcting any spelling or grammar issues. Then, organize it clearly with headings, "
49
+ "bullet points, and proper formatting. Maintain the original intent and voice of the "
50
+ "author, but enhance readability and flow. Do not add embellishments or AI-style phrasing."
51
+ )
52
+
53
+ # === Encode uploaded bytes ===
54
+ def encode_image_to_base64(file_bytes):
55
+ return base64.b64encode(file_bytes).decode("utf-8")
56
+
57
+ # === Upload transcription result to OCI ===
58
+ def upload_to_object_storage(user_name, text):
59
+ timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
60
+ filename = f"{user_name.replace(' ', '_')}_{timestamp}.txt"
61
+ object_storage.put_object(
62
+ namespace_name=namespace,
63
+ bucket_name=bucket_name,
64
+ object_name=filename,
65
+ put_object_body=text.encode("utf-8")
66
+ )
67
+ return filename
68
+
69
+ # === List files in object storage ===
70
+ def list_object_store():
71
+ try:
72
+ objects = object_storage.list_objects(namespace, bucket_name)
73
+ return "\n".join([obj.name for obj in objects.data.objects if obj.name.endswith(".txt")])
74
+ except Exception as e:
75
+ return f"Failed to list objects: {str(e)}"
76
+
77
+ # === Download file ===
78
+ def download_transcription(file_name):
79
+ try:
80
+ response = object_storage.get_object(namespace, bucket_name, file_name)
81
+ return response.data.text
82
+ except Exception as e:
83
+ return f"Failed to download: {str(e)}"
84
+
85
+ # === Get files in date range ===
86
+ def get_files_by_date_range(start_date, end_date):
87
+ result = []
88
+ objects = object_storage.list_objects(namespace, bucket_name).data.objects
89
+ for obj in objects:
90
+ match = re.search(r'(\d{8}_\d{6})', obj.name)
91
+ if match:
92
+ obj_date = datetime.strptime(match.group(1), "%Y%m%d_%H%M%S")
93
+ if start_date <= obj_date <= end_date:
94
+ result.append(obj.name)
95
+ return result
96
+
97
+ # === Analyze content with OpenAI ===
98
+ def summarize_range(start_date, end_date):
99
+ files = get_files_by_date_range(start_date, end_date)
100
+ combined_text = ""
101
+ for name in files:
102
+ combined_text += download_transcription(name) + "\n"
103
+ if not combined_text.strip():
104
+ return "No content found."
105
+ response = client.chat.completions.create(
106
+ model="gpt-4-turbo",
107
+ messages=[
108
+ {"role": "system", "content": "You are a summarization expert."},
109
+ {"role": "user", "content": "Please summarize the following transcriptions in detail:\n" + combined_text}
110
+ ],
111
+ max_tokens=1500
112
+ )
113
+ return response.choices[0].message.content
114
+
115
+ def recommend_next_steps(start_date, end_date):
116
+ files = get_files_by_date_range(start_date, end_date)
117
+ combined_text = ""
118
+ for name in files:
119
+ combined_text += download_transcription(name) + "\n"
120
+ if not combined_text.strip():
121
+ return "No content found."
122
+ response = client.chat.completions.create(
123
+ model="gpt-4-turbo",
124
+ messages=[
125
+ {"role": "system", "content": "You are an operations consultant."},
126
+ {"role": "user", "content": "Please recommend next steps based on these transcriptions:\n" + combined_text}
127
+ ],
128
+ max_tokens=1500
129
+ )
130
+ return response.choices[0].message.content
131
+
132
+ # === Generate word cloud and sentiment mock ===
133
+ def generate_word_map(start_date, end_date):
134
+ files = get_files_by_date_range(start_date, end_date)
135
+ combined_text = ""
136
+ for name in files:
137
+ combined_text += download_transcription(name) + "\n"
138
+ if not combined_text.strip():
139
+ return "No content found."
140
+ wordcloud = WordCloud(width=800, height=400, background_color='white').generate(combined_text)
141
+ plt.figure(figsize=(10, 5))
142
+ plt.imshow(wordcloud, interpolation='bilinear')
143
+ plt.axis("off")
144
+ buf = io.BytesIO()
145
+ plt.savefig(buf, format="png")
146
+ buf.seek(0)
147
+ return gr.Image.update(value=buf)
148
+
149
+ # === Transcription logic ===
150
+ def transcribe_image(file_bytes, user_name):
151
+ if not file_bytes:
152
+ return "No image uploaded."
153
+ encoded = encode_image_to_base64(file_bytes)
154
+ image_url = f"data:image/jpeg;base64,{encoded}"
155
+ response = client.chat.completions.create(
156
+ model="gpt-4-turbo",
157
+ messages=[
158
+ {"role": "system", "content": system_prompt},
159
+ {"role": "user", "content": [
160
+ {"type": "text", "text": user_prompt_template},
161
+ {"type": "image_url", "image_url": {"url": image_url}}
162
+ ]}
163
+ ],
164
+ max_tokens=1500
165
+ )
166
+ timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
167
+ result = f"🗓️ Transcribed on: {timestamp}\n\n{response.choices[0].message.content}"
168
+ upload_to_object_storage(user_name, result)
169
+ return result
170
+
171
+ # === Gradio Interface ===
172
+ with gr.Blocks() as app:
173
+ gr.Markdown("## Handwritten Note Transcriber & Analyzer")
174
+
175
+ with gr.Row():
176
+ user_dropdown = gr.Dropdown(
177
+ choices=["Jim Goodwin", "Zahabiya Ali rampurawala", "Keith Gauvin"],
178
+ label="Who is uploading this?"
179
+ )
180
+
181
+ input_file = gr.File(label="Upload image", type="binary", file_types=[".jpg", ".jpeg", ".png"])
182
+ output_text = gr.Textbox(label="Transcription Output", lines=30)
183
+ input_file.change(fn=transcribe_image, inputs=[input_file, user_dropdown], outputs=output_text)
184
+
185
+ gr.Button("List Object Store").click(fn=list_object_store, outputs=gr.Textbox(label="Object Store Contents"))
186
+
187
+ gr.Markdown("### Download or Analyze Transcriptions")
188
+ download_input = gr.Textbox(label="File name to download")
189
+ download_output = gr.Textbox(label="Downloaded Transcription")
190
+ gr.Button("Download File").click(fn=download_transcription, inputs=download_input, outputs=download_output)
191
+
192
+ gr.Markdown("### Summarize or Recommend from Date Range")
193
+ start = gr.Textbox(label="Start Date (YYYY-MM-DD)")
194
+ end = gr.Textbox(label="End Date (YYYY-MM-DD)")
195
+ summary_output = gr.Textbox(label="Summary")
196
+ gr.Button("Summarize Range").click(
197
+ fn=lambda s, e: summarize_range(datetime.strptime(s, "%Y-%m-%d"), datetime.strptime(e, "%Y-%m-%d")),
198
+ inputs=[start, end],
199
+ outputs=summary_output
200
+ )
201
+
202
+ rec_output = gr.Textbox(label="Recommendations")
203
+ gr.Button("Recommend Next Steps").click(
204
+ fn=lambda s, e: recommend_next_steps(datetime.strptime(s, "%Y-%m-%d"), datetime.strptime(e, "%Y-%m-%d")),
205
+ inputs=[start, end],
206
+ outputs=rec_output
207
+ )
208
+
209
+ gr.Markdown("### Word Cloud")
210
+ gr.Button("Generate Word Map").click(
211
+ fn=lambda s, e: generate_word_map(datetime.strptime(s, "%Y-%m-%d"), datetime.strptime(e, "%Y-%m-%d")),
212
+ inputs=[start, end],
213
+ outputs=gr.Image()
214
+ )
215
+
216
+ # === Launch App ===
217
+ if __name__ == "__main__":
218
+ app.launch(share=True)