File size: 7,050 Bytes
657d516
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d17fc09
657d516
d17fc09
657d516
d17fc09
 
 
 
 
 
 
 
 
 
657d516
 
 
 
 
 
d17fc09
657d516
d17fc09
657d516
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# === Imports ===
import os
import re
import gradio as gr
import openai
from datetime import datetime
from bs4 import BeautifulSoup

# --- API Keys ---
openai_api_key = os.environ.get("OPENAI_API_KEY")
if not openai_api_key:
    raise ValueError("OPENAI_API_KEY environment variable is not set.")

client = openai.OpenAI(api_key=openai_api_key)

# --- Exadata Specs ---
exadata_specs = {
    "X7": {"Quarter Rack": {"max_iops": 350000, "max_throughput": 25}, "Half Rack": {"max_iops": 700000, "max_throughput": 50}, "Full Rack": {"max_iops": 1400000, "max_throughput": 100}},
    "X8": {"Quarter Rack": {"max_iops": 380000, "max_throughput": 28}, "Half Rack": {"max_iops": 760000, "max_throughput": 56}, "Full Rack": {"max_iops": 1520000, "max_throughput": 112}},
    "X9": {"Quarter Rack": {"max_iops": 450000, "max_throughput": 30}, "Half Rack": {"max_iops": 900000, "max_throughput": 60}, "Full Rack": {"max_iops": 1800000, "max_throughput": 120}},
    "X10": {"Quarter Rack": {"max_iops": 500000, "max_throughput": 35}, "Half Rack": {"max_iops": 1000000, "max_throughput": 70}, "Full Rack": {"max_iops": 2000000, "max_throughput": 140}},
    "X11M": {"Quarter Rack": {"max_iops": 600000, "max_throughput": 40}, "Half Rack": {"max_iops": 1200000, "max_throughput": 80}, "Full Rack": {"max_iops": 2400000, "max_throughput": 160}},
}

# --- Utils ---
def clean_awr_content(content):
    if "<html" in content.lower():
        soup = BeautifulSoup(content, "html.parser")
        return soup.get_text()
    return content

# === AGENTS ===

class CriticalAnalyzerAgent:
    def analyze(self, content, performance_test_mode, exadata_model, rack_size):
        cleaned_content = clean_awr_content(content)
        if len(cleaned_content) > 128000:
            cleaned_content = cleaned_content[:128000] + "\n\n[TRUNCATED]..."

        prompt = f"""
You are an expert Oracle DBA performance analyst specialized in AWR + Exadata.

Please perform advanced analysis on the following report:

======== AWR REPORT START ========
{cleaned_content}
======== AWR REPORT END ========

Required Output:
- Performance Summary (with metric values)
- Detailed Bottlenecks + Risks (quantified)
- Forecast + Predictions
- Monitoring Recommendations
- Exadata Statistics (IO, Flash Cache, Smart Scan)
- Recommended Next Steps to Bridge Gaps
"""

        if performance_test_mode and exadata_model and rack_size:
            specs = exadata_specs.get(exadata_model, {}).get(rack_size, {})
            if specs:
                prompt += f"""

This was a PERFORMANCE TEST on Oracle Exadata {exadata_model} {rack_size}.
Theoretical Max:
- IOPS: {specs['max_iops']}
- Throughput: {specs['max_throughput']} GB/s

Compare observed vs theoretical. Recommend actions to close the performance gap.
"""

        response = client.chat.completions.create(
            model="gpt-4-turbo",
            messages=[
                {"role": "system", "content": "You are an expert Oracle DBA."},
                {"role": "user", "content": prompt}
            ]
        )

        return response.choices[0].message.content.strip()

class HealthAgent:
    def check_health(self, content):
        cleaned_content = clean_awr_content(content)
        if len(cleaned_content) > 128000:
            cleaned_content = cleaned_content[:128000] + "\n\n[TRUNCATED]..."

        prompt = f"""
You are the Oracle AWR Health Analysis Agent.

Your primary responsibility is to detect and report any possible database health risks or failures from the AWR report.

You MUST:
- Identify all mentions of warnings, failures, critical issues, and alerts.
- Do not omit any mention of failure or warnings, even minor ones.
- Clearly classify them as CRITICAL, WARNING, or INFO.
- Provide suggested actions for CRITICAL and WARNING level issues.
- Always confirm at the end if no CRITICAL or WARNING issues were found.

You are NOT allowed to generalize or omit any issue, no matter how small.

If Flash Cache, I/O, Smart Scan, ASM, Redo log, or RAC interconnect issues are mentioned, they MUST be called out explicitly.

AWR CONTENT:
{cleaned_content}
"""

        response = client.chat.completions.create(
            model="gpt-4-turbo",  # or "gpt-4o" if preferred/available
            messages=[
                {"role": "system", "content": "You are the strict Oracle AWR Health Analysis Agent."},
                {"role": "user", "content": prompt}
            ]
        )

        return response.choices[0].message.content.strip()

class RaterAgent:
    def rate(self, content):
        prompt = f"Rate the following analysis from 1-5 stars and explain:\n\n{content}"
        response = client.chat.completions.create(
            model="gpt-4-turbo",
            messages=[{"role": "user", "content": prompt}]
        )
        return response.choices[0].message.content.strip()

# === Main Process ===
def process_awr(awr_text, threshold, performance_test_mode, exadata_model, rack_size):
    analyzer = CriticalAnalyzerAgent()
    health = HealthAgent()
    rater = RaterAgent()

    if not awr_text.strip():
        return "No AWR text provided", "", ""

    analysis = analyzer.analyze(awr_text, performance_test_mode, exadata_model, rack_size)
    health_status = health.check_health(awr_text)
    rating_text = rater.rate(analysis)

    stars = 0
    match = re.search(r"(\d+)", rating_text)
    if match:
        stars = int(match.group(1))

    retry_status = "✅ Accepted"

    if stars < threshold:
        analysis_retry = analyzer.analyze(awr_text, performance_test_mode, exadata_model, rack_size)
        rating_text_retry = rater.rate(analysis_retry)
        retry_status = "✅ Retry Occurred"
        analysis = analysis_retry
        rating_text = rating_text_retry

    return analysis, health_status, rating_text, retry_status

# === Gradio UI ===
with gr.Blocks() as demo:
    gr.Markdown("# 🧠 Multi-Agent Oracle AWR Analyzer (Production Edition)")

    awr_text = gr.Textbox(label="Paste AWR Report", lines=30)
    threshold = gr.Slider(0, 5, value=3, step=1, label="Correctness Threshold (Stars)")
    performance_test_mode = gr.Checkbox(label="Performance Test Mode")
    exadata_model = gr.Dropdown(choices=list(exadata_specs.keys()), label="Exadata Model", visible=False)
    rack_size = gr.Dropdown(choices=["Quarter Rack", "Half Rack", "Full Rack"], label="Rack Size", visible=False)

    def toggle_visibility(mode):
        return gr.update(visible=mode), gr.update(visible=mode)

    performance_test_mode.change(toggle_visibility, inputs=performance_test_mode, outputs=[exadata_model, rack_size])

    analyze_btn = gr.Button("Analyze AWR Report")
    output = gr.Textbox(label="AWR Analysis", lines=20)
    health = gr.Textbox(label="Health Agent Findings", lines=5)
    rating = gr.Textbox(label="Rater", lines=3)
    retry_status = gr.Textbox(label="Retry Status")

    analyze_btn.click(process_awr, inputs=[awr_text, threshold, performance_test_mode, exadata_model, rack_size], outputs=[output, health, rating, retry_status])

demo.launch(debug=True)