Spaces:
Sleeping
Sleeping
File size: 7,050 Bytes
657d516 d17fc09 657d516 d17fc09 657d516 d17fc09 657d516 d17fc09 657d516 d17fc09 657d516 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
# === Imports ===
import os
import re
import gradio as gr
import openai
from datetime import datetime
from bs4 import BeautifulSoup
# --- API Keys ---
openai_api_key = os.environ.get("OPENAI_API_KEY")
if not openai_api_key:
raise ValueError("OPENAI_API_KEY environment variable is not set.")
client = openai.OpenAI(api_key=openai_api_key)
# --- Exadata Specs ---
exadata_specs = {
"X7": {"Quarter Rack": {"max_iops": 350000, "max_throughput": 25}, "Half Rack": {"max_iops": 700000, "max_throughput": 50}, "Full Rack": {"max_iops": 1400000, "max_throughput": 100}},
"X8": {"Quarter Rack": {"max_iops": 380000, "max_throughput": 28}, "Half Rack": {"max_iops": 760000, "max_throughput": 56}, "Full Rack": {"max_iops": 1520000, "max_throughput": 112}},
"X9": {"Quarter Rack": {"max_iops": 450000, "max_throughput": 30}, "Half Rack": {"max_iops": 900000, "max_throughput": 60}, "Full Rack": {"max_iops": 1800000, "max_throughput": 120}},
"X10": {"Quarter Rack": {"max_iops": 500000, "max_throughput": 35}, "Half Rack": {"max_iops": 1000000, "max_throughput": 70}, "Full Rack": {"max_iops": 2000000, "max_throughput": 140}},
"X11M": {"Quarter Rack": {"max_iops": 600000, "max_throughput": 40}, "Half Rack": {"max_iops": 1200000, "max_throughput": 80}, "Full Rack": {"max_iops": 2400000, "max_throughput": 160}},
}
# --- Utils ---
def clean_awr_content(content):
if "<html" in content.lower():
soup = BeautifulSoup(content, "html.parser")
return soup.get_text()
return content
# === AGENTS ===
class CriticalAnalyzerAgent:
def analyze(self, content, performance_test_mode, exadata_model, rack_size):
cleaned_content = clean_awr_content(content)
if len(cleaned_content) > 128000:
cleaned_content = cleaned_content[:128000] + "\n\n[TRUNCATED]..."
prompt = f"""
You are an expert Oracle DBA performance analyst specialized in AWR + Exadata.
Please perform advanced analysis on the following report:
======== AWR REPORT START ========
{cleaned_content}
======== AWR REPORT END ========
Required Output:
- Performance Summary (with metric values)
- Detailed Bottlenecks + Risks (quantified)
- Forecast + Predictions
- Monitoring Recommendations
- Exadata Statistics (IO, Flash Cache, Smart Scan)
- Recommended Next Steps to Bridge Gaps
"""
if performance_test_mode and exadata_model and rack_size:
specs = exadata_specs.get(exadata_model, {}).get(rack_size, {})
if specs:
prompt += f"""
This was a PERFORMANCE TEST on Oracle Exadata {exadata_model} {rack_size}.
Theoretical Max:
- IOPS: {specs['max_iops']}
- Throughput: {specs['max_throughput']} GB/s
Compare observed vs theoretical. Recommend actions to close the performance gap.
"""
response = client.chat.completions.create(
model="gpt-4-turbo",
messages=[
{"role": "system", "content": "You are an expert Oracle DBA."},
{"role": "user", "content": prompt}
]
)
return response.choices[0].message.content.strip()
class HealthAgent:
def check_health(self, content):
cleaned_content = clean_awr_content(content)
if len(cleaned_content) > 128000:
cleaned_content = cleaned_content[:128000] + "\n\n[TRUNCATED]..."
prompt = f"""
You are the Oracle AWR Health Analysis Agent.
Your primary responsibility is to detect and report any possible database health risks or failures from the AWR report.
You MUST:
- Identify all mentions of warnings, failures, critical issues, and alerts.
- Do not omit any mention of failure or warnings, even minor ones.
- Clearly classify them as CRITICAL, WARNING, or INFO.
- Provide suggested actions for CRITICAL and WARNING level issues.
- Always confirm at the end if no CRITICAL or WARNING issues were found.
You are NOT allowed to generalize or omit any issue, no matter how small.
If Flash Cache, I/O, Smart Scan, ASM, Redo log, or RAC interconnect issues are mentioned, they MUST be called out explicitly.
AWR CONTENT:
{cleaned_content}
"""
response = client.chat.completions.create(
model="gpt-4-turbo", # or "gpt-4o" if preferred/available
messages=[
{"role": "system", "content": "You are the strict Oracle AWR Health Analysis Agent."},
{"role": "user", "content": prompt}
]
)
return response.choices[0].message.content.strip()
class RaterAgent:
def rate(self, content):
prompt = f"Rate the following analysis from 1-5 stars and explain:\n\n{content}"
response = client.chat.completions.create(
model="gpt-4-turbo",
messages=[{"role": "user", "content": prompt}]
)
return response.choices[0].message.content.strip()
# === Main Process ===
def process_awr(awr_text, threshold, performance_test_mode, exadata_model, rack_size):
analyzer = CriticalAnalyzerAgent()
health = HealthAgent()
rater = RaterAgent()
if not awr_text.strip():
return "No AWR text provided", "", ""
analysis = analyzer.analyze(awr_text, performance_test_mode, exadata_model, rack_size)
health_status = health.check_health(awr_text)
rating_text = rater.rate(analysis)
stars = 0
match = re.search(r"(\d+)", rating_text)
if match:
stars = int(match.group(1))
retry_status = "✅ Accepted"
if stars < threshold:
analysis_retry = analyzer.analyze(awr_text, performance_test_mode, exadata_model, rack_size)
rating_text_retry = rater.rate(analysis_retry)
retry_status = "✅ Retry Occurred"
analysis = analysis_retry
rating_text = rating_text_retry
return analysis, health_status, rating_text, retry_status
# === Gradio UI ===
with gr.Blocks() as demo:
gr.Markdown("# 🧠 Multi-Agent Oracle AWR Analyzer (Production Edition)")
awr_text = gr.Textbox(label="Paste AWR Report", lines=30)
threshold = gr.Slider(0, 5, value=3, step=1, label="Correctness Threshold (Stars)")
performance_test_mode = gr.Checkbox(label="Performance Test Mode")
exadata_model = gr.Dropdown(choices=list(exadata_specs.keys()), label="Exadata Model", visible=False)
rack_size = gr.Dropdown(choices=["Quarter Rack", "Half Rack", "Full Rack"], label="Rack Size", visible=False)
def toggle_visibility(mode):
return gr.update(visible=mode), gr.update(visible=mode)
performance_test_mode.change(toggle_visibility, inputs=performance_test_mode, outputs=[exadata_model, rack_size])
analyze_btn = gr.Button("Analyze AWR Report")
output = gr.Textbox(label="AWR Analysis", lines=20)
health = gr.Textbox(label="Health Agent Findings", lines=5)
rating = gr.Textbox(label="Rater", lines=3)
retry_status = gr.Textbox(label="Retry Status")
analyze_btn.click(process_awr, inputs=[awr_text, threshold, performance_test_mode, exadata_model, rack_size], outputs=[output, health, rating, retry_status])
demo.launch(debug=True) |