Spaces:
Sleeping
Sleeping
File size: 7,729 Bytes
657d516 802e708 657d516 c2632ba 105b3fd c2632ba 657d516 c2632ba 657d516 c2632ba 657d516 105b3fd 657d516 d17fc09 657d516 c0308e1 657d516 d17fc09 c0308e1 d17fc09 c0308e1 105b3fd 657d516 802e708 657d516 d17fc09 657d516 802e708 657d516 802e708 105b3fd 657d516 c2632ba 657d516 c2632ba 657d516 c2632ba 802e708 657d516 c2632ba 105b3fd 657d516 c2632ba 657d516 c2632ba 657d516 c2632ba 657d516 c2632ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
# === Imports ===
import os
import re
import gradio as gr
import openai
from datetime import datetime
from bs4 import BeautifulSoup
# --- API Keys ---
openai_api_key = os.environ.get("OPENAI_API_KEY")
if not openai_api_key:
raise ValueError("OPENAI_API_KEY environment variable is not set.")
client = openai.OpenAI(api_key=openai_api_key)
openrouter_key = os.environ.get("OPENROUTER")
openrouter = openai.OpenAI(api_key=openrouter_key, base_url="https://openrouter.ai/api/v1")
# --- Exadata Specs ---
exadata_specs = {
"X7": {"Quarter Rack": {"max_iops": 350000, "max_throughput": 25}, "Half Rack": {"max_iops": 700000, "max_throughput": 50}, "Full Rack": {"max_iops": 1400000, "max_throughput": 100}},
"X8": {"Quarter Rack": {"max_iops": 380000, "max_throughput": 28}, "Half Rack": {"max_iops": 760000, "max_throughput": 56}, "Full Rack": {"max_iops": 1520000, "max_throughput": 112}},
"X9": {"Quarter Rack": {"max_iops": 450000, "max_throughput": 30}, "Half Rack": {"max_iops": 900000, "max_throughput": 60}, "Full Rack": {"max_iops": 1800000, "max_throughput": 120}},
"X10": {"Quarter Rack": {"max_iops": 500000, "max_throughput": 35}, "Half Rack": {"max_iops": 1000000, "max_throughput": 70}, "Full Rack": {"max_iops": 2000000, "max_throughput": 140}},
"X11M": {"Quarter Rack": {"max_iops": 600000, "max_throughput": 40}, "Half Rack": {"max_iops": 1200000, "max_throughput": 80}, "Full Rack": {"max_iops": 2400000, "max_throughput": 160}},
}
# --- Supported LLM Models ---
supported_llms = {
"gpt-3.5-turbo": "Fastest / Lowest Cost - General AWR Healthcheck",
"gpt-4-turbo": "Balanced - Production Performance Analysis",
"gpt-4o": "Deepest Analysis - Exadata, RAC, Smart Scan, Critical Issues",
}
# --- Utils ---
def clean_awr_content(content):
if "<html" in content.lower():
soup = BeautifulSoup(content, "html.parser")
return soup.get_text()
return content
# === AGENTS ===
class CriticalAnalyzerAgent:
def analyze(self, content, performance_test_mode, exadata_model, rack_size, llm_model):
cleaned_content = clean_awr_content(content)
if len(cleaned_content) > 128000:
cleaned_content = cleaned_content[:128000] + "\n\n[TRUNCATED]..."
prompt = f"""
You are an expert Oracle DBA performance analyst specialized in AWR + Exadata.
Please perform advanced analysis on the following report:
======== AWR REPORT START ========
{cleaned_content}
======== AWR REPORT END ========
Required Output:
- Performance Summary (with metric values)
- Detailed Bottlenecks + Risks (quantified)
- Forecast + Predictions
- Monitoring Recommendations
- Exadata Statistics (IO, Flash Cache, Smart Scan)
- Recommended Next Steps to Bridge Gaps
"""
if performance_test_mode and exadata_model and rack_size:
specs = exadata_specs.get(exadata_model, {}).get(rack_size, {})
if specs:
prompt += f"""
This was a PERFORMANCE TEST on Oracle Exadata {exadata_model} {rack_size}.
Theoretical Max:
- IOPS: {specs['max_iops']}
- Throughput: {specs['max_throughput']} GB/s
Compare observed vs theoretical. Recommend actions to close the performance gap.
"""
response = client.chat.completions.create(
model=llm_model,
messages=[
{"role": "system", "content": "You are an expert Oracle DBA."},
{"role": "user", "content": prompt}
]
)
return response.choices[0].message.content.strip()
class HealthAgent:
def check_health(self, content, llm_model):
cleaned_content = clean_awr_content(content)
if len(cleaned_content) > 128000:
cleaned_content = cleaned_content[:128000] + "\n\n[TRUNCATED]..."
prompt = f"""
You are the Oracle AWR Health Analysis Agent.
Your primary responsibility is to detect and report ANY and ALL database health risks, alerts, warnings, or failures in the AWR report.
You MUST:
- Identify all issues marked as CRITICAL, WARNING, ALERT, FAILED, OFFLINE, CONFINED, DROPPED, or ERROR.
- Never omit or generalize. If something appears important, call it out.
- Classify each issue into: 🚨 CRITICAL / ⚠️ WARNING / ✅ INFO
- For CRITICAL and WARNING, provide suggested actions or considerations.
- Always confirm at the end if no CRITICAL or WARNING issues were found.
Special Attention Areas:
- Flash Cache or Flash Disk Failures
- I/O Subsystem stalls or errors
- ASM/Grid Disk issues
- Smart Scan failures
- Redo Log issues
- RAC Interconnect issues
AWR CONTENT:
{cleaned_content}
"""
response = client.chat.completions.create(
model=llm_model,
messages=[
{"role": "system", "content": "You are the strict Oracle AWR Health Analysis Agent."},
{"role": "user", "content": prompt}
]
)
return response.choices[0].message.content.strip()
class RaterAgent:
def rate(self, content):
prompt = f"Rate the following analysis from 1-5 stars and explain:\n\n{content}"
response = openrouter.chat.completions.create(
model="mistralai/Mixtral-8x7B-Instruct",
messages=[{"role": "user", "content": prompt}]
)
return response.choices[0].message.content.strip()
# === Main Process ===
def process_awr(awr_text, threshold, performance_test_mode, exadata_model, rack_size, llm_model):
analyzer = CriticalAnalyzerAgent()
health = HealthAgent()
rater = RaterAgent()
if not awr_text.strip():
return "No AWR text provided", "", "", ""
analysis = analyzer.analyze(awr_text, performance_test_mode, exadata_model, rack_size, llm_model)
health_status = health.check_health(awr_text, llm_model)
rating_text = rater.rate(analysis)
stars = 0
match = re.search(r"(\d+)", rating_text)
if match:
stars = int(match.group(1))
retry_status = "✅ Accepted"
if stars < threshold:
analysis_retry = analyzer.analyze(awr_text, performance_test_mode, exadata_model, rack_size, llm_model)
rating_text_retry = rater.rate(analysis_retry)
retry_status = "✅ Retry Occurred"
analysis = analysis_retry
rating_text = rating_text_retry
return analysis, health_status, rating_text, retry_status
# === Gradio UI ===
with gr.Blocks() as demo:
gr.Markdown("# 🧠 Multi-Agent Oracle AWR Analyzer (Production Edition)")
awr_text = gr.Textbox(label="Paste AWR Report", lines=30)
threshold = gr.Slider(0, 5, value=3, step=1, label="Correctness Threshold (Stars)")
performance_test_mode = gr.Checkbox(label="Performance Test Mode")
exadata_model = gr.Dropdown(choices=list(exadata_specs.keys()), label="Exadata Model", visible=False)
rack_size = gr.Dropdown(choices=["Quarter Rack", "Half Rack", "Full Rack"], label="Rack Size", visible=False)
llm_selector = gr.Dropdown(choices=list(supported_llms.keys()), value="gpt-4-turbo", label="LLM Model")
def toggle_visibility(mode):
return gr.update(visible=mode), gr.update(visible=mode)
performance_test_mode.change(toggle_visibility, inputs=performance_test_mode, outputs=[exadata_model, rack_size])
analyze_btn = gr.Button("Analyze AWR Report")
output = gr.Textbox(label="AWR Analysis", lines=20)
health = gr.Textbox(label="Health Agent Findings", lines=10)
rating = gr.Textbox(label="Rater", lines=3)
retry_status = gr.Textbox(label="Retry Status")
analyze_btn.click(process_awr,
inputs=[awr_text, threshold, performance_test_mode, exadata_model, rack_size, llm_selector],
outputs=[output, health, rating, retry_status])
demo.launch(debug=True)
|