File size: 7,729 Bytes
657d516
 
 
 
 
 
 
 
 
 
 
 
 
 
 
802e708
 
 
657d516
 
 
 
 
 
 
 
 
c2632ba
 
105b3fd
 
 
c2632ba
 
657d516
 
 
 
 
 
 
 
 
 
c2632ba
657d516
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2632ba
657d516
 
 
 
 
 
 
 
 
105b3fd
657d516
 
 
 
 
d17fc09
657d516
c0308e1
657d516
d17fc09
c0308e1
 
 
 
d17fc09
 
c0308e1
105b3fd
 
 
 
 
 
657d516
 
 
 
 
 
802e708
657d516
d17fc09
657d516
 
 
 
 
 
 
802e708
657d516
802e708
105b3fd
657d516
 
 
 
 
c2632ba
657d516
 
 
 
 
c2632ba
657d516
c2632ba
 
802e708
657d516
 
 
 
 
 
 
 
 
c2632ba
105b3fd
657d516
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2632ba
657d516
 
 
 
 
 
 
 
c2632ba
657d516
 
 
c2632ba
 
 
657d516
c2632ba
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
# === Imports ===
import os
import re
import gradio as gr
import openai
from datetime import datetime
from bs4 import BeautifulSoup

# --- API Keys ---
openai_api_key = os.environ.get("OPENAI_API_KEY")
if not openai_api_key:
    raise ValueError("OPENAI_API_KEY environment variable is not set.")

client = openai.OpenAI(api_key=openai_api_key)

openrouter_key = os.environ.get("OPENROUTER")
openrouter = openai.OpenAI(api_key=openrouter_key, base_url="https://openrouter.ai/api/v1")

# --- Exadata Specs ---
exadata_specs = {
    "X7": {"Quarter Rack": {"max_iops": 350000, "max_throughput": 25}, "Half Rack": {"max_iops": 700000, "max_throughput": 50}, "Full Rack": {"max_iops": 1400000, "max_throughput": 100}},
    "X8": {"Quarter Rack": {"max_iops": 380000, "max_throughput": 28}, "Half Rack": {"max_iops": 760000, "max_throughput": 56}, "Full Rack": {"max_iops": 1520000, "max_throughput": 112}},
    "X9": {"Quarter Rack": {"max_iops": 450000, "max_throughput": 30}, "Half Rack": {"max_iops": 900000, "max_throughput": 60}, "Full Rack": {"max_iops": 1800000, "max_throughput": 120}},
    "X10": {"Quarter Rack": {"max_iops": 500000, "max_throughput": 35}, "Half Rack": {"max_iops": 1000000, "max_throughput": 70}, "Full Rack": {"max_iops": 2000000, "max_throughput": 140}},
    "X11M": {"Quarter Rack": {"max_iops": 600000, "max_throughput": 40}, "Half Rack": {"max_iops": 1200000, "max_throughput": 80}, "Full Rack": {"max_iops": 2400000, "max_throughput": 160}},
}

# --- Supported LLM Models ---
supported_llms = {
    "gpt-3.5-turbo": "Fastest / Lowest Cost - General AWR Healthcheck",
    "gpt-4-turbo": "Balanced - Production Performance Analysis",
    "gpt-4o": "Deepest Analysis - Exadata, RAC, Smart Scan, Critical Issues",
}

# --- Utils ---
def clean_awr_content(content):
    if "<html" in content.lower():
        soup = BeautifulSoup(content, "html.parser")
        return soup.get_text()
    return content

# === AGENTS ===

class CriticalAnalyzerAgent:
    def analyze(self, content, performance_test_mode, exadata_model, rack_size, llm_model):
        cleaned_content = clean_awr_content(content)
        if len(cleaned_content) > 128000:
            cleaned_content = cleaned_content[:128000] + "\n\n[TRUNCATED]..."

        prompt = f"""
You are an expert Oracle DBA performance analyst specialized in AWR + Exadata.

Please perform advanced analysis on the following report:

======== AWR REPORT START ========
{cleaned_content}
======== AWR REPORT END ========

Required Output:
- Performance Summary (with metric values)
- Detailed Bottlenecks + Risks (quantified)
- Forecast + Predictions
- Monitoring Recommendations
- Exadata Statistics (IO, Flash Cache, Smart Scan)
- Recommended Next Steps to Bridge Gaps
"""

        if performance_test_mode and exadata_model and rack_size:
            specs = exadata_specs.get(exadata_model, {}).get(rack_size, {})
            if specs:
                prompt += f"""

This was a PERFORMANCE TEST on Oracle Exadata {exadata_model} {rack_size}.
Theoretical Max:
- IOPS: {specs['max_iops']}
- Throughput: {specs['max_throughput']} GB/s

Compare observed vs theoretical. Recommend actions to close the performance gap.
"""

        response = client.chat.completions.create(
            model=llm_model,
            messages=[
                {"role": "system", "content": "You are an expert Oracle DBA."},
                {"role": "user", "content": prompt}
            ]
        )

        return response.choices[0].message.content.strip()

class HealthAgent:
    def check_health(self, content, llm_model):
        cleaned_content = clean_awr_content(content)
        if len(cleaned_content) > 128000:
            cleaned_content = cleaned_content[:128000] + "\n\n[TRUNCATED]..."

        prompt = f"""
You are the Oracle AWR Health Analysis Agent.

Your primary responsibility is to detect and report ANY and ALL database health risks, alerts, warnings, or failures in the AWR report.

You MUST:
- Identify all issues marked as CRITICAL, WARNING, ALERT, FAILED, OFFLINE, CONFINED, DROPPED, or ERROR.
- Never omit or generalize. If something appears important, call it out.
- Classify each issue into: 🚨 CRITICAL / ⚠️ WARNING / ✅ INFO
- For CRITICAL and WARNING, provide suggested actions or considerations.
- Always confirm at the end if no CRITICAL or WARNING issues were found.

Special Attention Areas:
- Flash Cache or Flash Disk Failures
- I/O Subsystem stalls or errors
- ASM/Grid Disk issues
- Smart Scan failures
- Redo Log issues
- RAC Interconnect issues

AWR CONTENT:
{cleaned_content}
"""

        response = client.chat.completions.create(
            model=llm_model,
            messages=[
                {"role": "system", "content": "You are the strict Oracle AWR Health Analysis Agent."},
                {"role": "user", "content": prompt}
            ]
        )

        return response.choices[0].message.content.strip()

class RaterAgent:
    def rate(self, content):
        prompt = f"Rate the following analysis from 1-5 stars and explain:\n\n{content}"
        response = openrouter.chat.completions.create(
            model="mistralai/Mixtral-8x7B-Instruct",
            messages=[{"role": "user", "content": prompt}]
        )
        return response.choices[0].message.content.strip()

# === Main Process ===
def process_awr(awr_text, threshold, performance_test_mode, exadata_model, rack_size, llm_model):
    analyzer = CriticalAnalyzerAgent()
    health = HealthAgent()
    rater = RaterAgent()

    if not awr_text.strip():
        return "No AWR text provided", "", "", ""

    analysis = analyzer.analyze(awr_text, performance_test_mode, exadata_model, rack_size, llm_model)
    health_status = health.check_health(awr_text, llm_model)
    rating_text = rater.rate(analysis)

    stars = 0
    match = re.search(r"(\d+)", rating_text)
    if match:
        stars = int(match.group(1))

    retry_status = "✅ Accepted"

    if stars < threshold:
        analysis_retry = analyzer.analyze(awr_text, performance_test_mode, exadata_model, rack_size, llm_model)
        rating_text_retry = rater.rate(analysis_retry)
        retry_status = "✅ Retry Occurred"
        analysis = analysis_retry
        rating_text = rating_text_retry

    return analysis, health_status, rating_text, retry_status

# === Gradio UI ===
with gr.Blocks() as demo:
    gr.Markdown("# 🧠 Multi-Agent Oracle AWR Analyzer (Production Edition)")

    awr_text = gr.Textbox(label="Paste AWR Report", lines=30)
    threshold = gr.Slider(0, 5, value=3, step=1, label="Correctness Threshold (Stars)")
    performance_test_mode = gr.Checkbox(label="Performance Test Mode")
    exadata_model = gr.Dropdown(choices=list(exadata_specs.keys()), label="Exadata Model", visible=False)
    rack_size = gr.Dropdown(choices=["Quarter Rack", "Half Rack", "Full Rack"], label="Rack Size", visible=False)
    llm_selector = gr.Dropdown(choices=list(supported_llms.keys()), value="gpt-4-turbo", label="LLM Model")

    def toggle_visibility(mode):
        return gr.update(visible=mode), gr.update(visible=mode)

    performance_test_mode.change(toggle_visibility, inputs=performance_test_mode, outputs=[exadata_model, rack_size])

    analyze_btn = gr.Button("Analyze AWR Report")
    output = gr.Textbox(label="AWR Analysis", lines=20)
    health = gr.Textbox(label="Health Agent Findings", lines=10)
    rating = gr.Textbox(label="Rater", lines=3)
    retry_status = gr.Textbox(label="Retry Status")

    analyze_btn.click(process_awr, 
                      inputs=[awr_text, threshold, performance_test_mode, exadata_model, rack_size, llm_selector], 
                      outputs=[output, health, rating, retry_status])

demo.launch(debug=True)