Spaces:
Sleeping
Sleeping
File size: 7,090 Bytes
ed9459f fc06528 ed9459f fc06528 bae2887 ed9459f fc06528 ed9459f fc06528 bae2887 ed9459f fc06528 ed9459f fc06528 ed9459f 2983bfb ed9459f fc06528 ed9459f 3ed0f40 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
# --- Imports ---
import os
import re
import gradio as gr
import openai
from datetime import datetime
from bs4 import BeautifulSoup
# --- API Keys ---
openai_api_key = os.environ.get("OPENAI_API_KEY")
openrouter_key = os.environ.get("OPENROUTER")
if not openai_api_key:
raise ValueError("OPENAI_API_KEY environment variable is not set.")
if not openrouter_key:
raise ValueError("OPENROUTER environment variable is not set.")
client = openai.OpenAI(api_key=openai_api_key)
openai_rater = openai.OpenAI(api_key=openrouter_key, base_url="https://openrouter.ai/api/v1")
# --- Logger ---
log_filename = "rating_log.txt"
if not os.path.exists(log_filename):
with open(log_filename, "w", encoding="utf-8") as f:
f.write("=== Rating Log Initialized ===\n")
# --- Exadata Specs ---
exadata_specs = {
"X7": {"Quarter Rack": {"max_iops": 350000, "max_throughput": 25},
"Half Rack": {"max_iops": 700000, "max_throughput": 50},
"Full Rack": {"max_iops": 1400000, "max_throughput": 100}},
"X8": {"Quarter Rack": {"max_iops": 380000, "max_throughput": 28},
"Half Rack": {"max_iops": 760000, "max_throughput": 56},
"Full Rack": {"max_iops": 1520000, "max_throughput": 112}},
"X9": {"Quarter Rack": {"max_iops": 450000, "max_throughput": 30},
"Half Rack": {"max_iops": 900000, "max_throughput": 60},
"Full Rack": {"max_iops": 1800000, "max_throughput": 120}},
"X10": {"Quarter Rack": {"max_iops": 500000, "max_throughput": 35},
"Half Rack": {"max_iops": 1000000, "max_throughput": 70},
"Full Rack": {"max_iops": 2000000, "max_throughput": 140}},
"X11M": {"Quarter Rack": {"max_iops": 600000, "max_throughput": 40},
"Half Rack": {"max_iops": 1200000, "max_throughput": 80},
"Full Rack": {"max_iops": 2400000, "max_throughput": 160}},
}
# --- Preprocessor ---
def clean_awr_content(content):
if "<html" in content.lower():
soup = BeautifulSoup(content, "html.parser")
text = soup.get_text()
else:
text = content
cleaned = "\n".join([line.strip() for line in text.splitlines() if line.strip()])
return cleaned
# --- AWR Analyzer ---
def analyze_awr(content, performance_test_mode, exadata_model, rack_size):
cleaned_content = clean_awr_content(content)
max_chars = 128000
if len(cleaned_content) > max_chars:
cleaned_content = cleaned_content[:max_chars] + "\n\n[TRUNCATED]..."
# Build prompt
prompt = f"""
You are an expert Oracle Database performance analyst with deep knowledge of AWR reports, Oracle RAC internals, and Exadata architecture (Smart Scan, Flash Cache, IORM, RDMA, Storage Indexes).
You must produce highly detailed diagnostic insights based on the AWR report provided below. Use numbers and thresholds whenever possible and explain why each observation matters. Do not simply say "high" or "low" β provide the metric, its value, and context.
======== AWR REPORT START ========
{cleaned_content}
======== AWR REPORT END ========
Please provide:
- **Performance Summary**
- **Detailed Analysis of Bottlenecks and/or Degradation Risks**
- **Performance Forecast and Predictions**
- **Specific Recommendations for Monitoring**
- **Exadata Statistics Performance Summary**
- **Recommended Next Steps to Bridge Performance Gap**
"""
# Add Exadata comparison if performance test mode
if performance_test_mode and exadata_model and rack_size:
specs = exadata_specs.get(exadata_model, {}).get(rack_size, {})
if specs:
prompt += f"""
This was a PERFORMANCE TEST on Oracle Exadata {exadata_model} {rack_size}.
Theoretical Max:
- Max IOPS: {specs['max_iops']}
- Max Throughput: {specs['max_throughput']} GB/s
Show actual vs theoretical and generate Recommended Next Steps to Bridge Performance Gap.
"""
# --- Call GPT ---
MODEL = "gpt-4-turbo"
response = client.chat.completions.create(
model=MODEL,
messages=[
{"role": "system", "content": "You are an expert Oracle Database performance analyst."},
{"role": "user", "content": prompt}
]
)
return response.choices[0].message.content.strip()
# --- Rater ---
def rate_answer_rater(question, final_answer):
prompt = f"Rate this answer 1-5 stars with explanation:\n\n{final_answer}"
response = openai_rater.chat.completions.create(
model="mistral/ministral-8b",
messages=[{"role": "user", "content": prompt}]
)
return response.choices[0].message.content.strip()
# --- Main Logic ---
def process_awr(awr_text, correctness_threshold, performance_test_mode, exadata_model, rack_size):
if not awr_text.strip():
return "No AWR report provided.", "", ""
answer = analyze_awr(awr_text, performance_test_mode, exadata_model, rack_size)
rating_text = rate_answer_rater("AWR Analysis", answer)
stars = 0
match = re.search(r"(\d+)", rating_text)
if match:
stars = int(match.group(1))
if stars < correctness_threshold:
answer_retry = analyze_awr(awr_text, performance_test_mode, exadata_model, rack_size)
rating_text_retry = rate_answer_rater("AWR Analysis (Retry)", answer_retry)
with open(log_filename, "a", encoding="utf-8") as log_file:
log_file.write(f"\n---\n{datetime.now()} RETRY\nOriginal: {answer}\nRating: {rating_text}\nRetry: {answer_retry}\nRetry Rating: {rating_text_retry}\n")
return answer_retry, rating_text_retry, "β
Retry Occurred (rating below threshold)"
else:
with open(log_filename, "a", encoding="utf-8") as log_file:
log_file.write(f"\n---\n{datetime.now()} SUCCESS\nAnswer: {answer}\nRating: {rating_text}\n")
return answer, rating_text, "β
Accepted on first try"
# --- Gradio UI ---
with gr.Blocks() as demo:
gr.Markdown("## π Oracle AWR Analyzer (AI + Rating + Exadata Gap Analysis)")
awr_text = gr.Textbox(label="Paste AWR Report (HTML or TXT)", lines=30, placeholder="Paste full AWR here...")
threshold = gr.Slider(0, 5, value=3, step=1, label="Correctness Threshold (Stars for Retry)")
performance_test_mode = gr.Checkbox(label="Performance Test Mode")
exadata_model = gr.Dropdown(choices=["X7", "X8", "X9", "X10", "X11M"], label="Exadata Model", visible=False)
rack_size = gr.Dropdown(choices=["Quarter Rack", "Half Rack", "Full Rack"], label="Rack Size", visible=False)
def toggle_visibility(mode):
return gr.update(visible=mode), gr.update(visible=mode)
performance_test_mode.change(toggle_visibility, inputs=performance_test_mode, outputs=[exadata_model, rack_size])
analyze_btn = gr.Button("Analyze AWR")
output = gr.Textbox(label="AWR Analysis Result", lines=15)
rating = gr.Textbox(label="Rater Rating + Explanation", lines=4)
retry_status = gr.Textbox(label="Retry Status")
analyze_btn.click(process_awr, inputs=[awr_text, threshold, performance_test_mode, exadata_model, rack_size], outputs=[output, rating, retry_status])
demo.launch(share=True)
|