Oracle-TANGO / app.py
kgauvin603's picture
Create app.py
f0845ba verified
raw
history blame
6.02 kB
# --- Imports ---
import os
import re
import gradio as gr
import openai
from datetime import datetime
from bs4 import BeautifulSoup
# --- API Keys ---
openai_api_key = os.environ.get("OPENAI_API_KEY")
if not openai_api_key:
raise ValueError("OPENAI_API_KEY environment variable is not set.")
client = openai.OpenAI(api_key=openai_api_key)
# --- Exadata Specs ---
exadata_specs = {
"X7": {"Quarter Rack": {"max_iops": 350000, "max_throughput": 25},
"Half Rack": {"max_iops": 700000, "max_throughput": 50},
"Full Rack": {"max_iops": 1400000, "max_throughput": 100}},
"X8": {"Quarter Rack": {"max_iops": 380000, "max_throughput": 28},
"Half Rack": {"max_iops": 760000, "max_throughput": 56},
"Full Rack": {"max_iops": 1520000, "max_throughput": 112}},
"X9": {"Quarter Rack": {"max_iops": 450000, "max_throughput": 30},
"Half Rack": {"max_iops": 900000, "max_throughput": 60},
"Full Rack": {"max_iops": 1800000, "max_throughput": 120}},
"X10": {"Quarter Rack": {"max_iops": 500000, "max_throughput": 35},
"Half Rack": {"max_iops": 1000000, "max_throughput": 70},
"Full Rack": {"max_iops": 2000000, "max_throughput": 140}},
"X11M": {"Quarter Rack": {"max_iops": 600000, "max_throughput": 40},
"Half Rack": {"max_iops": 1200000, "max_throughput": 80},
"Full Rack": {"max_iops": 2400000, "max_throughput": 160}},
}
# --- Preprocessor ---
def clean_awr_content(content):
if "<html" in content.lower():
soup = BeautifulSoup(content, "html.parser")
text = soup.get_text()
else:
text = content
cleaned = "\n".join([line.strip() for line in text.splitlines() if line.strip()])
return cleaned
# --- Agent Classes ---
SYSTEM_PROMPT = """
You are an expert Oracle Exadata and RAC performance consultant.
Prioritize CRITICAL SYSTEM HEALTH issues first. Provide DBA-level observations and recommendations.
"""
class HealthRiskAgent:
def __init__(self, model="gpt-4o"):
self.model = model
def analyze(self, data):
prompt = f"""
======== BEGIN DATA ========
{data}
======== END DATA ========
Identify CRITICAL SYSTEM HEALTH issues (Flash Cache degraded, Confined Disks, Redo Stress, RAC GC waits, IO Errors).
If issues found, output "⚠️ CRITICAL ALERTS DETECTED" + Explanation + DBA Actions.
If clean, output "✅ None Detected".
"""
response = client.chat.completions.create(
model=self.model,
messages=[
{"role": "system", "content": SYSTEM_PROMPT},
{"role": "user", "content": prompt}
]
)
return response.choices[0].message.content.strip()
class PerformanceAnalyzerAgent:
def __init__(self, model="gpt-4o"):
self.model = model
def analyze(self, data, exadata_model=None, rack_size=None):
prompt = f"""
======== BEGIN DATA ========
{data}
======== END DATA ========
Please provide:
- Performance Summary
- Detailed Bottleneck Analysis
- Forecast / Predictions
- Monitoring Suggestions
- Exadata Stats Summary
- Recommended Next Steps
If this is a performance test:
- Compare observed vs theoretical for Exadata
- Recommend gap-closing actions.
"""
if exadata_model and rack_size:
specs = exadata_specs.get(exadata_model, {}).get(rack_size, {})
if specs:
prompt += f"""
Theoretical Max for Oracle Exadata {exadata_model} {rack_size}:
- Max IOPS: {specs['max_iops']}
- Max Throughput: {specs['max_throughput']} GB/s
"""
response = client.chat.completions.create(
model=self.model,
messages=[
{"role": "system", "content": SYSTEM_PROMPT},
{"role": "user", "content": prompt}
]
)
return response.choices[0].message.content.strip()
class AWRAgentCoordinator:
def __init__(self):
self.health_agent = HealthRiskAgent()
self.performance_agent = PerformanceAnalyzerAgent()
def analyze(self, awr_data, exadata_model=None, rack_size=None):
# Run both agents
health_result = self.health_agent.analyze(awr_data)
perf_result = self.performance_agent.analyze(awr_data, exadata_model, rack_size)
return health_result, perf_result
# --- Gradio UI ---
agent = AWRAgentCoordinator()
with gr.Blocks() as demo:
gr.Markdown("# 📊 Exadata + RAC AWR Analyzer (Multi-Agent View)")
awr_text = gr.Textbox(label="Paste AWR Report (HTML or TXT)", lines=30, placeholder="Paste AWR report here...")
performance_test_mode = gr.Checkbox(label="Performance Test Mode")
exadata_model = gr.Dropdown(choices=["X7", "X8", "X9", "X10", "X11M"], label="Exadata Model", visible=False)
rack_size = gr.Dropdown(choices=["Quarter Rack", "Half Rack", "Full Rack"], label="Rack Size", visible=False)
def toggle_visibility(mode):
return gr.update(visible=mode), gr.update(visible=mode)
performance_test_mode.change(toggle_visibility, inputs=performance_test_mode, outputs=[exadata_model, rack_size])
analyze_btn = gr.Button("Analyze AWR Report")
with gr.Row():
health_output = gr.Textbox(label="Health Risk Agent (Critical Alerts + Actions)", lines=20)
performance_output = gr.Textbox(label="Performance Analyzer Agent (Full Analysis)", lines=20)
def run_analysis(awr_text, performance_test_mode, exadata_model, rack_size):
if not awr_text.strip():
return "❗ Please paste the AWR report first.", ""
cleaned = clean_awr_content(awr_text)
if performance_test_mode:
health, perf = agent.analyze(cleaned, exadata_model, rack_size)
else:
health, perf = agent.analyze(cleaned)
return health, perf
analyze_btn.click(run_analysis, inputs=[awr_text, performance_test_mode, exadata_model, rack_size],
outputs=[health_output, performance_output])
demo.launch(debug=True)