Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -8,10 +8,21 @@ from bs4 import BeautifulSoup
|
|
8 |
|
9 |
# --- API Keys ---
|
10 |
openai_api_key = os.environ.get("OPENAI_API_KEY")
|
|
|
|
|
11 |
if not openai_api_key:
|
12 |
raise ValueError("OPENAI_API_KEY environment variable is not set.")
|
|
|
|
|
13 |
|
14 |
client = openai.OpenAI(api_key=openai_api_key)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
# --- Exadata Specs ---
|
17 |
exadata_specs = {
|
@@ -42,98 +53,76 @@ def clean_awr_content(content):
|
|
42 |
cleaned = "\n".join([line.strip() for line in text.splitlines() if line.strip()])
|
43 |
return cleaned
|
44 |
|
|
|
|
|
|
|
|
|
45 |
|
46 |
-
# ---
|
47 |
-
|
48 |
-
|
49 |
-
You are an expert Oracle Exadata and RAC performance consultant.
|
50 |
-
Prioritize CRITICAL SYSTEM HEALTH issues first. Provide DBA-level observations and recommendations.
|
51 |
-
"""
|
52 |
-
|
53 |
-
class HealthRiskAgent:
|
54 |
-
def __init__(self, model="gpt-4o"):
|
55 |
self.model = model
|
56 |
|
57 |
-
def analyze(self,
|
58 |
-
|
59 |
-
|
60 |
-
{data}
|
61 |
-
======== END DATA ========
|
62 |
-
|
63 |
-
Identify CRITICAL SYSTEM HEALTH issues (Flash Cache degraded, Confined Disks, Redo Stress, RAC GC waits, IO Errors).
|
64 |
-
If issues found, output "⚠️ CRITICAL ALERTS DETECTED" + Explanation + DBA Actions.
|
65 |
-
If clean, output "✅ None Detected".
|
66 |
-
"""
|
67 |
-
response = client.chat.completions.create(
|
68 |
-
model=self.model,
|
69 |
-
messages=[
|
70 |
-
{"role": "system", "content": SYSTEM_PROMPT},
|
71 |
-
{"role": "user", "content": prompt}
|
72 |
-
]
|
73 |
-
)
|
74 |
-
return response.choices[0].message.content.strip()
|
75 |
-
|
76 |
|
77 |
-
class PerformanceAnalyzerAgent:
|
78 |
-
def __init__(self, model="gpt-4o"):
|
79 |
-
self.model = model
|
80 |
-
|
81 |
-
def analyze(self, data, exadata_model=None, rack_size=None):
|
82 |
prompt = f"""
|
83 |
-
|
84 |
-
|
85 |
-
|
|
|
86 |
|
87 |
Please provide:
|
88 |
- Performance Summary
|
89 |
-
- Detailed
|
90 |
-
- Forecast
|
91 |
-
- Monitoring
|
92 |
-
- Exadata
|
93 |
-
- Recommended Next Steps
|
94 |
-
|
95 |
-
If this is a performance test:
|
96 |
-
- Compare observed vs theoretical for Exadata
|
97 |
-
- Recommend gap-closing actions.
|
98 |
"""
|
99 |
-
|
|
|
100 |
specs = exadata_specs.get(exadata_model, {}).get(rack_size, {})
|
101 |
if specs:
|
102 |
prompt += f"""
|
103 |
-
|
|
|
104 |
- Max IOPS: {specs['max_iops']}
|
105 |
- Max Throughput: {specs['max_throughput']} GB/s
|
|
|
106 |
"""
|
|
|
107 |
response = client.chat.completions.create(
|
108 |
model=self.model,
|
109 |
messages=[
|
110 |
-
{"role": "system", "content":
|
111 |
{"role": "user", "content": prompt}
|
112 |
]
|
113 |
)
|
114 |
return response.choices[0].message.content.strip()
|
115 |
|
|
|
|
|
|
|
116 |
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
health_result = self.health_agent.analyze(awr_data)
|
125 |
-
perf_result = self.performance_agent.analyze(awr_data, exadata_model, rack_size)
|
126 |
-
|
127 |
-
return health_result, perf_result
|
128 |
-
|
129 |
|
130 |
# --- Gradio UI ---
|
131 |
-
|
|
|
132 |
|
133 |
with gr.Blocks() as demo:
|
134 |
-
gr.Markdown("
|
135 |
|
136 |
-
awr_text = gr.Textbox(label="Paste AWR Report (HTML or TXT)", lines=30
|
|
|
137 |
performance_test_mode = gr.Checkbox(label="Performance Test Mode")
|
138 |
exadata_model = gr.Dropdown(choices=["X7", "X8", "X9", "X10", "X11M"], label="Exadata Model", visible=False)
|
139 |
rack_size = gr.Dropdown(choices=["Quarter Rack", "Half Rack", "Full Rack"], label="Rack Size", visible=False)
|
@@ -143,26 +132,37 @@ with gr.Blocks() as demo:
|
|
143 |
|
144 |
performance_test_mode.change(toggle_visibility, inputs=performance_test_mode, outputs=[exadata_model, rack_size])
|
145 |
|
146 |
-
analyze_btn = gr.Button("Analyze AWR
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
performance_output = gr.Textbox(label="Performance Analyzer Agent (Full Analysis)", lines=20)
|
151 |
|
152 |
-
def
|
153 |
if not awr_text.strip():
|
154 |
-
return "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
|
156 |
-
|
|
|
157 |
|
158 |
-
|
159 |
-
health, perf = agent.analyze(cleaned, exadata_model, rack_size)
|
160 |
else:
|
161 |
-
|
|
|
162 |
|
163 |
-
|
164 |
|
165 |
-
analyze_btn.click(
|
166 |
-
outputs=[health_output, performance_output])
|
167 |
|
168 |
-
demo.launch(debug=True)
|
|
|
8 |
|
9 |
# --- API Keys ---
|
10 |
openai_api_key = os.environ.get("OPENAI_API_KEY")
|
11 |
+
openrouter_key = os.environ.get("OPENROUTER")
|
12 |
+
|
13 |
if not openai_api_key:
|
14 |
raise ValueError("OPENAI_API_KEY environment variable is not set.")
|
15 |
+
if not openrouter_key:
|
16 |
+
raise ValueError("OPENROUTER environment variable is not set.")
|
17 |
|
18 |
client = openai.OpenAI(api_key=openai_api_key)
|
19 |
+
openai_rater = openai.OpenAI(api_key=openrouter_key, base_url="https://openrouter.ai/api/v1")
|
20 |
+
|
21 |
+
# --- Logger ---
|
22 |
+
log_filename = "rating_log.txt"
|
23 |
+
if not os.path.exists(log_filename):
|
24 |
+
with open(log_filename, "w", encoding="utf-8") as f:
|
25 |
+
f.write("=== Rating Log Initialized ===\n")
|
26 |
|
27 |
# --- Exadata Specs ---
|
28 |
exadata_specs = {
|
|
|
53 |
cleaned = "\n".join([line.strip() for line in text.splitlines() if line.strip()])
|
54 |
return cleaned
|
55 |
|
56 |
+
def truncate_awr_content(content, max_chars=90000):
|
57 |
+
if len(content) > max_chars:
|
58 |
+
return content[:max_chars] + "\n\n[TRUNCATED]"
|
59 |
+
return content
|
60 |
|
61 |
+
# --- AWR Analyzer ---
|
62 |
+
class AWRAnalyzer:
|
63 |
+
def __init__(self, model="gpt-4-turbo"):
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
self.model = model
|
65 |
|
66 |
+
def analyze(self, content, performance_test_mode, exadata_model, rack_size):
|
67 |
+
cleaned_content = clean_awr_content(content)
|
68 |
+
final_content = truncate_awr_content(cleaned_content)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
|
|
|
|
|
|
|
|
|
|
70 |
prompt = f"""
|
71 |
+
You are an expert Oracle Database performance analyst with deep knowledge of AWR reports, Oracle RAC internals, and Exadata architecture (Smart Scan, Flash Cache, IORM, RDMA, Storage Indexes).
|
72 |
+
======== AWR REPORT START ========
|
73 |
+
{final_content}
|
74 |
+
======== AWR REPORT END ========
|
75 |
|
76 |
Please provide:
|
77 |
- Performance Summary
|
78 |
+
- Detailed Analysis of Bottlenecks and/or Degradation Risks
|
79 |
+
- Performance Forecast and Predictions
|
80 |
+
- Specific Recommendations for Monitoring
|
81 |
+
- Exadata Statistics Performance Summary
|
82 |
+
- Recommended Next Steps to Bridge Performance Gap
|
|
|
|
|
|
|
|
|
83 |
"""
|
84 |
+
|
85 |
+
if performance_test_mode and exadata_model and rack_size:
|
86 |
specs = exadata_specs.get(exadata_model, {}).get(rack_size, {})
|
87 |
if specs:
|
88 |
prompt += f"""
|
89 |
+
This was a PERFORMANCE TEST on Oracle Exadata {exadata_model} {rack_size}.
|
90 |
+
Theoretical Max:
|
91 |
- Max IOPS: {specs['max_iops']}
|
92 |
- Max Throughput: {specs['max_throughput']} GB/s
|
93 |
+
Show actual vs theoretical and generate Recommended Next Steps to Bridge Performance Gap.
|
94 |
"""
|
95 |
+
|
96 |
response = client.chat.completions.create(
|
97 |
model=self.model,
|
98 |
messages=[
|
99 |
+
{"role": "system", "content": "You are an expert Oracle Database performance analyst."},
|
100 |
{"role": "user", "content": prompt}
|
101 |
]
|
102 |
)
|
103 |
return response.choices[0].message.content.strip()
|
104 |
|
105 |
+
class Rater:
|
106 |
+
def __init__(self, model="mistral/ministral-8b"):
|
107 |
+
self.model = model
|
108 |
|
109 |
+
def rate(self, question, final_answer):
|
110 |
+
prompt = f"Rate this answer 1-5 stars with explanation:\n\n{final_answer}"
|
111 |
+
response = openai_rater.chat.completions.create(
|
112 |
+
model=self.model,
|
113 |
+
messages=[{"role": "user", "content": prompt}]
|
114 |
+
)
|
115 |
+
return response.choices[0].message.content.strip()
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
# --- Gradio UI ---
|
118 |
+
analyzer_agent = AWRAnalyzer()
|
119 |
+
rater_agent = Rater()
|
120 |
|
121 |
with gr.Blocks() as demo:
|
122 |
+
gr.Markdown("## 📊 Oracle AWR Analyzer (with Truncation + Multi-Agent View)")
|
123 |
|
124 |
+
awr_text = gr.Textbox(label="Paste AWR Report (HTML or TXT)", lines=30)
|
125 |
+
threshold = gr.Slider(0, 5, value=3, step=1, label="Correctness Threshold (Stars)")
|
126 |
performance_test_mode = gr.Checkbox(label="Performance Test Mode")
|
127 |
exadata_model = gr.Dropdown(choices=["X7", "X8", "X9", "X10", "X11M"], label="Exadata Model", visible=False)
|
128 |
rack_size = gr.Dropdown(choices=["Quarter Rack", "Half Rack", "Full Rack"], label="Rack Size", visible=False)
|
|
|
132 |
|
133 |
performance_test_mode.change(toggle_visibility, inputs=performance_test_mode, outputs=[exadata_model, rack_size])
|
134 |
|
135 |
+
analyze_btn = gr.Button("Analyze AWR")
|
136 |
+
output = gr.Textbox(label="AWR Analysis Result", lines=15)
|
137 |
+
rating = gr.Textbox(label="Rater Rating + Explanation", lines=4)
|
138 |
+
retry_status = gr.Textbox(label="Retry Status")
|
|
|
139 |
|
140 |
+
def process(awr_text, threshold, performance_test_mode, exadata_model, rack_size):
|
141 |
if not awr_text.strip():
|
142 |
+
return "No AWR report provided.", "", ""
|
143 |
+
|
144 |
+
answer = analyzer_agent.analyze(awr_text, performance_test_mode, exadata_model, rack_size)
|
145 |
+
rating_text = rater_agent.rate("AWR Analysis", answer)
|
146 |
+
|
147 |
+
stars = 0
|
148 |
+
match = re.search(r"(\d+)", rating_text)
|
149 |
+
if match:
|
150 |
+
stars = int(match.group(1))
|
151 |
+
|
152 |
+
if stars < threshold:
|
153 |
+
retry_answer = analyzer_agent.analyze(awr_text, performance_test_mode, exadata_model, rack_size)
|
154 |
+
retry_rating = rater_agent.rate("AWR Analysis Retry", retry_answer)
|
155 |
|
156 |
+
with open(log_filename, "a", encoding="utf-8") as log_file:
|
157 |
+
log_file.write(f"\n---\n{datetime.now()} RETRY\nOriginal: {answer}\nRating: {rating_text}\nRetry: {retry_answer}\nRetry Rating: {retry_rating}\n")
|
158 |
|
159 |
+
return retry_answer, retry_rating, "✅ Retry Occurred"
|
|
|
160 |
else:
|
161 |
+
with open(log_filename, "a", encoding="utf-8") as log_file:
|
162 |
+
log_file.write(f"\n---\n{datetime.now()} SUCCESS\nAnswer: {answer}\nRating: {rating_text}\n")
|
163 |
|
164 |
+
return answer, rating_text, "✅ Accepted on first try"
|
165 |
|
166 |
+
analyze_btn.click(process, inputs=[awr_text, threshold, performance_test_mode, exadata_model, rack_size], outputs=[output, rating, retry_status])
|
|
|
167 |
|
168 |
+
demo.launch(debug=True)
|