Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# === Imports ===
|
2 |
+
import os
|
3 |
+
import re
|
4 |
+
import gradio as gr
|
5 |
+
import openai
|
6 |
+
import oci
|
7 |
+
from datetime import datetime
|
8 |
+
from bs4 import BeautifulSoup
|
9 |
+
|
10 |
+
# --- API Keys ---
|
11 |
+
openai_api_key = os.environ.get("OPENAI_API_KEY")
|
12 |
+
if not openai_api_key:
|
13 |
+
raise ValueError("OPENAI_API_KEY environment variable is not set.")
|
14 |
+
|
15 |
+
client = openai.OpenAI(api_key=openai_api_key)
|
16 |
+
|
17 |
+
openrouter_key = os.environ.get("OPENROUTER")
|
18 |
+
openrouter = openai.OpenAI(api_key=openrouter_key, base_url="https://openrouter.ai/api/v1")
|
19 |
+
|
20 |
+
# --- OCI Object Storage Config ---
|
21 |
+
#oci_config = {
|
22 |
+
# "user": os.environ.get("OCI_USER"),
|
23 |
+
# "tenancy": os.environ.get("OCI_TENANCY"),
|
24 |
+
# "fingerprint": os.environ.get("OCI_FINGERPRINT"),
|
25 |
+
# "region": os.environ.get("OCI_REGION"),
|
26 |
+
# "key_content": os.environ.get("OCI_PRIVATE_KEY"),
|
27 |
+
#}
|
28 |
+
|
29 |
+
# === OCI Object Storage Setup ===
|
30 |
+
oci_config = {
|
31 |
+
"user": os.environ.get("OCI_USER"),
|
32 |
+
"tenancy": os.environ.get("OCI_TENANCY"),
|
33 |
+
"fingerprint": os.environ.get("OCI_FINGERPRINT"),
|
34 |
+
"region": os.environ.get("OCI_REGION"),
|
35 |
+
"key_content": os.environ.get("OCI_PRIVATE_KEY")
|
36 |
+
}
|
37 |
+
|
38 |
+
namespace = os.environ.get("OCI_NAMESPACE")
|
39 |
+
bucket_name = os.environ.get("OCI_BUCKET_NAME")
|
40 |
+
|
41 |
+
try:
|
42 |
+
object_storage = oci.object_storage.ObjectStorageClient(oci_config)
|
43 |
+
except Exception as e:
|
44 |
+
print("Failed to initialize OCI Object Storage client:", e)
|
45 |
+
|
46 |
+
|
47 |
+
namespace = os.environ.get("OCI_NAMESPACE")
|
48 |
+
bucket_name = os.environ.get("OCI_BUCKET_NAME")
|
49 |
+
object_storage = oci.object_storage.ObjectStorageClient(oci_config)
|
50 |
+
|
51 |
+
# --- Exadata Specs ---
|
52 |
+
exadata_specs = {
|
53 |
+
"X7": {"Quarter Rack": {"max_iops": 350000, "max_throughput": 25}, "Half Rack": {"max_iops": 700000, "max_throughput": 50}, "Full Rack": {"max_iops": 1400000, "max_throughput": 100}},
|
54 |
+
"X8": {"Quarter Rack": {"max_iops": 380000, "max_throughput": 28}, "Half Rack": {"max_iops": 760000, "max_throughput": 56}, "Full Rack": {"max_iops": 1520000, "max_throughput": 112}},
|
55 |
+
"X9": {"Quarter Rack": {"max_iops": 450000, "max_throughput": 30}, "Half Rack": {"max_iops": 900000, "max_throughput": 60}, "Full Rack": {"max_iops": 1800000, "max_throughput": 120}},
|
56 |
+
"X10": {"Quarter Rack": {"max_iops": 500000, "max_throughput": 35}, "Half Rack": {"max_iops": 1000000, "max_throughput": 70}, "Full Rack": {"max_iops": 2000000, "max_throughput": 140}},
|
57 |
+
"X11M": {"Quarter Rack": {"max_iops": 600000, "max_throughput": 40}, "Half Rack": {"max_iops": 1200000, "max_throughput": 80}, "Full Rack": {"max_iops": 2400000, "max_throughput": 160}},
|
58 |
+
}
|
59 |
+
|
60 |
+
# --- Supported LLM Models ---
|
61 |
+
supported_llms = {
|
62 |
+
"gpt-3.5-turbo": "Fastest / Lowest Cost - General AWR Healthcheck",
|
63 |
+
"gpt-4-turbo": "Balanced - Production Performance Analysis",
|
64 |
+
"gpt-4o": "Deepest Analysis - Exadata, RAC, Smart Scan, Critical Issues",
|
65 |
+
}
|
66 |
+
|
67 |
+
# --- Utils ---
|
68 |
+
def clean_awr_content(content):
|
69 |
+
if "<html" in content.lower():
|
70 |
+
soup = BeautifulSoup(content, "html.parser")
|
71 |
+
return soup.get_text()
|
72 |
+
return content
|
73 |
+
|
74 |
+
def upload_awr_file(file_obj):
|
75 |
+
filename = os.path.basename(file_obj.name)
|
76 |
+
content = file_obj.read()
|
77 |
+
object_storage.put_object(namespace, bucket_name, filename, content)
|
78 |
+
return f"\u2705 Uploaded {filename}"
|
79 |
+
|
80 |
+
def list_awr_files():
|
81 |
+
try:
|
82 |
+
objects = object_storage.list_objects(namespace, bucket_name)
|
83 |
+
return [obj.name for obj in objects.data.objects if obj.name.endswith(".html") or obj.name.endswith(".txt")]
|
84 |
+
except Exception as e:
|
85 |
+
return [f"Error listing objects: {str(e)}"]
|
86 |
+
|
87 |
+
def get_awr_file_text(filename):
|
88 |
+
try:
|
89 |
+
response = object_storage.get_object(namespace, bucket_name, filename)
|
90 |
+
raw = response.data.content.decode()
|
91 |
+
return clean_awr_content(raw)
|
92 |
+
except Exception as e:
|
93 |
+
return f"Error loading file: {str(e)}"
|
94 |
+
|
95 |
+
def compare_awrs(file_list, llm_model):
|
96 |
+
if not file_list:
|
97 |
+
return "No files selected."
|
98 |
+
combined_text = ""
|
99 |
+
for fname in file_list:
|
100 |
+
content = get_awr_file_text(fname)
|
101 |
+
combined_text += f"\n=== AWR: {fname} ===\n{content[:3000]}...\n"
|
102 |
+
prompt = f"""
|
103 |
+
You are a senior Oracle performance engineer. You will compare multiple AWR reports and highlight:
|
104 |
+
- Key differences in workload or system behavior
|
105 |
+
- Major trends or anomalies
|
106 |
+
- Which report shows better performance and why
|
107 |
+
- Exadata-specific metrics like Smart Scan, Flash I/O
|
108 |
+
- Suggestions to unify or improve system behavior
|
109 |
+
AWR Reports:
|
110 |
+
{combined_text}
|
111 |
+
"""
|
112 |
+
response = client.chat.completions.create(
|
113 |
+
model=llm_model,
|
114 |
+
messages=[{"role": "system", "content": "You are a comparative AWR analysis expert."},
|
115 |
+
{"role": "user", "content": prompt}]
|
116 |
+
)
|
117 |
+
return response.choices[0].message.content.strip()
|
118 |
+
|
119 |
+
# === Gradio UI ===
|
120 |
+
with gr.Blocks() as demo:
|
121 |
+
with gr.Tab("Manual AWR Analysis"):
|
122 |
+
gr.Markdown("# \U0001f9e0 Multi-Agent Oracle AWR Analyzer (Production Edition)")
|
123 |
+
awr_text = gr.Textbox(label="Paste AWR Report", lines=30)
|
124 |
+
threshold = gr.Slider(0, 5, value=3, step=1, label="Correctness Threshold (Stars)")
|
125 |
+
performance_test_mode = gr.Checkbox(label="Performance Test Mode")
|
126 |
+
exadata_model = gr.Dropdown(choices=list(exadata_specs.keys()), label="Exadata Model", visible=False)
|
127 |
+
rack_size = gr.Dropdown(choices=["Quarter Rack", "Half Rack", "Full Rack"], label="Rack Size", visible=False)
|
128 |
+
llm_selector = gr.Dropdown(choices=list(supported_llms.keys()), value="gpt-4-turbo", label="LLM Model")
|
129 |
+
|
130 |
+
def toggle_visibility(mode):
|
131 |
+
return gr.update(visible=mode), gr.update(visible=mode)
|
132 |
+
|
133 |
+
performance_test_mode.change(toggle_visibility, inputs=performance_test_mode, outputs=[exadata_model, rack_size])
|
134 |
+
analyze_btn = gr.Button("Analyze AWR Report")
|
135 |
+
output = gr.Textbox(label="AWR Analysis", lines=20)
|
136 |
+
health = gr.Textbox(label="Health Agent Findings", lines=10)
|
137 |
+
rating = gr.Textbox(label="Rater", lines=3)
|
138 |
+
retry_status = gr.Textbox(label="Retry Status")
|
139 |
+
|
140 |
+
from your_existing_code import process_awr # Replace with actual import or include function here
|
141 |
+
analyze_btn.click(process_awr,
|
142 |
+
inputs=[awr_text, threshold, performance_test_mode, exadata_model, rack_size, llm_selector],
|
143 |
+
outputs=[output, health, rating, retry_status])
|
144 |
+
|
145 |
+
with gr.Tab("Compare AWRs from OCI"):
|
146 |
+
upload_file = gr.File(label="Upload AWR Report", file_types=[".html", ".txt"])
|
147 |
+
upload_status = gr.Textbox(label="Upload Status")
|
148 |
+
upload_file.upload(fn=upload_awr_file, inputs=upload_file, outputs=upload_status)
|
149 |
+
|
150 |
+
refresh_button = gr.Button("\U0001f503 Refresh File List")
|
151 |
+
file_multiselect = gr.Dropdown(choices=[], label="Select AWR Files", multiselect=True)
|
152 |
+
refresh_button.click(fn=lambda: gr.update(choices=list_awr_files()), outputs=file_multiselect)
|
153 |
+
|
154 |
+
llm_compare = gr.Dropdown(choices=list(supported_llms.keys()), value="gpt-4-turbo", label="LLM Model for Comparison")
|
155 |
+
compare_output = gr.Textbox(label="Comparison Output", lines=20)
|
156 |
+
gr.Button("Compare Selected AWRs").click(fn=compare_awrs, inputs=[file_multiselect, llm_compare], outputs=compare_output)
|
157 |
+
|
158 |
+
if __name__ == "__main__":
|
159 |
+
demo.launch(debug=True)
|