# === Imports === import os import re import gradio as gr import openai from datetime import datetime from bs4 import BeautifulSoup # --- API Keys --- openai_api_key = os.environ.get("OPENAI_API_KEY") if not openai_api_key: raise ValueError("OPENAI_API_KEY environment variable is not set.") client = openai.OpenAI(api_key=openai_api_key) openrouter_key = os.environ.get("OPENROUTER") openrouter = openai.OpenAI(api_key=openrouter_key, base_url="https://openrouter.ai/api/v1") # --- Exadata Specs --- exadata_specs = { "X7": {"Quarter Rack": {"max_iops": 350000, "max_throughput": 25}, "Half Rack": {"max_iops": 700000, "max_throughput": 50}, "Full Rack": {"max_iops": 1400000, "max_throughput": 100}}, "X8": {"Quarter Rack": {"max_iops": 380000, "max_throughput": 28}, "Half Rack": {"max_iops": 760000, "max_throughput": 56}, "Full Rack": {"max_iops": 1520000, "max_throughput": 112}}, "X9": {"Quarter Rack": {"max_iops": 450000, "max_throughput": 30}, "Half Rack": {"max_iops": 900000, "max_throughput": 60}, "Full Rack": {"max_iops": 1800000, "max_throughput": 120}}, "X10": {"Quarter Rack": {"max_iops": 500000, "max_throughput": 35}, "Half Rack": {"max_iops": 1000000, "max_throughput": 70}, "Full Rack": {"max_iops": 2000000, "max_throughput": 140}}, "X11M": {"Quarter Rack": {"max_iops": 600000, "max_throughput": 40}, "Half Rack": {"max_iops": 1200000, "max_throughput": 80}, "Full Rack": {"max_iops": 2400000, "max_throughput": 160}}, } # --- Supported LLM Models --- supported_llms = { "gpt-3.5-turbo": "Fastest / Lowest Cost - General AWR Healthcheck", "gpt-4-turbo": "Balanced - Production Performance Analysis", "gpt-4o": "Deepest Analysis - Exadata, RAC, Smart Scan, Critical Issues", } # --- Utils --- def clean_awr_content(content): if " 128000: cleaned_content = cleaned_content[:128000] + "\n\n[TRUNCATED]..." prompt = f""" You are an expert Oracle DBA performance analyst specialized in AWR + Exadata. Please perform advanced analysis on the following report: ======== AWR REPORT START ======== {cleaned_content} ======== AWR REPORT END ======== Required Output: - Performance Summary (with metric values) - Detailed Bottlenecks + Risks (quantified) - Forecast + Predictions - Monitoring Recommendations - Exadata Statistics (IO, Flash Cache, Smart Scan) - Recommended Next Steps to Bridge Gaps """ if performance_test_mode and exadata_model and rack_size: specs = exadata_specs.get(exadata_model, {}).get(rack_size, {}) if specs: prompt += f""" This was a PERFORMANCE TEST on Oracle Exadata {exadata_model} {rack_size}. Theoretical Max: - IOPS: {specs['max_iops']} - Throughput: {specs['max_throughput']} GB/s Compare observed vs theoretical. Recommend actions to close the performance gap. """ response = client.chat.completions.create( model=llm_model, messages=[ {"role": "system", "content": "You are an expert Oracle DBA."}, {"role": "user", "content": prompt} ] ) return response.choices[0].message.content.strip() class HealthAgent: def check_health(self, content, llm_model): cleaned_content = clean_awr_content(content) if len(cleaned_content) > 128000: cleaned_content = cleaned_content[:128000] + "\n\n[TRUNCATED]..." prompt = f""" You are the Oracle AWR Health Analysis Agent. Your primary responsibility is to detect and report ANY and ALL database health risks, alerts, warnings, or failures in the AWR report. You MUST: - Identify all issues marked as CRITICAL, WARNING, ALERT, FAILED, OFFLINE, CONFINED, DROPPED, or ERROR. - Never omit or generalize. If something appears important, call it out. - Classify each issue into: 🚨 CRITICAL / ⚠️ WARNING / ✅ INFO - For CRITICAL and WARNING, provide suggested actions or considerations. - Always confirm at the end if no CRITICAL or WARNING issues were found. Special Attention Areas: - Flash Cache or Flash Disk Failures - I/O Subsystem stalls or errors - ASM/Grid Disk issues - Smart Scan failures - Redo Log issues - RAC Interconnect issues AWR CONTENT: {cleaned_content} """ response = client.chat.completions.create( model=llm_model, messages=[ {"role": "system", "content": "You are the strict Oracle AWR Health Analysis Agent."}, {"role": "user", "content": prompt} ] ) return response.choices[0].message.content.strip() class RaterAgent: def rate(self, content): prompt = f"Rate the following analysis from 1-5 stars and explain:\n\n{content}" response = openrouter.chat.completions.create( model="mistralai/Mixtral-8x7B-Instruct", messages=[{"role": "user", "content": prompt}] ) return response.choices[0].message.content.strip() # === Main Process === def process_awr(awr_text, threshold, performance_test_mode, exadata_model, rack_size, llm_model): analyzer = CriticalAnalyzerAgent() health = HealthAgent() rater = RaterAgent() if not awr_text.strip(): return "No AWR text provided", "", "", "" analysis = analyzer.analyze(awr_text, performance_test_mode, exadata_model, rack_size, llm_model) health_status = health.check_health(awr_text, llm_model) rating_text = rater.rate(analysis) stars = 0 match = re.search(r"(\d+)", rating_text) if match: stars = int(match.group(1)) retry_status = "✅ Accepted" if stars < threshold: analysis_retry = analyzer.analyze(awr_text, performance_test_mode, exadata_model, rack_size, llm_model) rating_text_retry = rater.rate(analysis_retry) retry_status = "✅ Retry Occurred" analysis = analysis_retry rating_text = rating_text_retry return analysis, health_status, rating_text, retry_status # === Gradio UI === with gr.Blocks() as demo: gr.Markdown("# 🧠 Multi-Agent Oracle AWR Analyzer (Production Edition)") awr_text = gr.Textbox(label="Paste AWR Report", lines=30) threshold = gr.Slider(0, 5, value=3, step=1, label="Correctness Threshold (Stars)") performance_test_mode = gr.Checkbox(label="Performance Test Mode") exadata_model = gr.Dropdown(choices=list(exadata_specs.keys()), label="Exadata Model", visible=False) rack_size = gr.Dropdown(choices=["Quarter Rack", "Half Rack", "Full Rack"], label="Rack Size", visible=False) llm_selector = gr.Dropdown(choices=list(supported_llms.keys()), value="gpt-4-turbo", label="LLM Model") def toggle_visibility(mode): return gr.update(visible=mode), gr.update(visible=mode) performance_test_mode.change(toggle_visibility, inputs=performance_test_mode, outputs=[exadata_model, rack_size]) analyze_btn = gr.Button("Analyze AWR Report") output = gr.Textbox(label="AWR Analysis", lines=20) health = gr.Textbox(label="Health Agent Findings", lines=10) rating = gr.Textbox(label="Rater", lines=3) retry_status = gr.Textbox(label="Retry Status") analyze_btn.click(process_awr, inputs=[awr_text, threshold, performance_test_mode, exadata_model, rack_size, llm_selector], outputs=[output, health, rating, retry_status]) demo.launch(debug=True)