# --- Imports --- import os import re import gradio as gr import openai from datetime import datetime from bs4 import BeautifulSoup # --- API Keys --- openai_api_key = os.environ.get("OPENAI_API_KEY") openrouter_key = os.environ.get("OPENROUTER") if not openai_api_key: raise ValueError("OPENAI_API_KEY environment variable is not set.") if not openrouter_key: raise ValueError("OPENROUTER environment variable is not set.") client = openai.OpenAI(api_key=openai_api_key) openai_rater = openai.OpenAI(api_key=openrouter_key, base_url="https://openrouter.ai/api/v1") # --- Logger --- log_filename = "rating_log.txt" if not os.path.exists(log_filename): with open(log_filename, "w", encoding="utf-8") as f: f.write("=== Rating Log Initialized ===\n") # --- Exadata Specs --- exadata_specs = { "X7": {"Quarter Rack": {"max_iops": 350000, "max_throughput": 25}, "Half Rack": {"max_iops": 700000, "max_throughput": 50}, "Full Rack": {"max_iops": 1400000, "max_throughput": 100}}, "X8": {"Quarter Rack": {"max_iops": 380000, "max_throughput": 28}, "Half Rack": {"max_iops": 760000, "max_throughput": 56}, "Full Rack": {"max_iops": 1520000, "max_throughput": 112}}, "X9": {"Quarter Rack": {"max_iops": 450000, "max_throughput": 30}, "Half Rack": {"max_iops": 900000, "max_throughput": 60}, "Full Rack": {"max_iops": 1800000, "max_throughput": 120}}, "X10": {"Quarter Rack": {"max_iops": 500000, "max_throughput": 35}, "Half Rack": {"max_iops": 1000000, "max_throughput": 70}, "Full Rack": {"max_iops": 2000000, "max_throughput": 140}}, "X11M": {"Quarter Rack": {"max_iops": 600000, "max_throughput": 40}, "Half Rack": {"max_iops": 1200000, "max_throughput": 80}, "Full Rack": {"max_iops": 2400000, "max_throughput": 160}}, } # --- Preprocessor --- def clean_awr_content(content): if " max_chars: cleaned_content = cleaned_content[:max_chars] + "\n\n[TRUNCATED]..." # Build prompt prompt = f""" You are an expert Oracle Database performance analyst with deep knowledge of AWR reports, Oracle RAC internals, and Exadata architecture (Smart Scan, Flash Cache, IORM, RDMA, Storage Indexes). You must produce highly detailed diagnostic insights based on the AWR report provided below. Use numbers and thresholds whenever possible and explain why each observation matters. Do not simply say "high" or "low" — provide the metric, its value, and context. ======== AWR REPORT START ======== {cleaned_content} ======== AWR REPORT END ======== Please provide: - **Performance Summary** - **Detailed Analysis of Bottlenecks and/or Degradation Risks** - **Performance Forecast and Predictions** - **Specific Recommendations for Monitoring** - **Exadata Statistics Performance Summary** - **Recommended Next Steps to Bridge Performance Gap** """ # Add Exadata comparison if performance test mode if performance_test_mode and exadata_model and rack_size: specs = exadata_specs.get(exadata_model, {}).get(rack_size, {}) if specs: prompt += f""" This was a PERFORMANCE TEST on Oracle Exadata {exadata_model} {rack_size}. Theoretical Max: - Max IOPS: {specs['max_iops']} - Max Throughput: {specs['max_throughput']} GB/s Show actual vs theoretical and generate Recommended Next Steps to Bridge Performance Gap. """ # --- Call GPT --- MODEL = "gpt-4-turbo" response = client.chat.completions.create( model=MODEL, messages=[ {"role": "system", "content": "You are an expert Oracle Database performance analyst."}, {"role": "user", "content": prompt} ] ) return response.choices[0].message.content.strip() # --- Rater --- def rate_answer_rater(question, final_answer): prompt = f"Rate this answer 1-5 stars with explanation:\n\n{final_answer}" response = openai_rater.chat.completions.create( model="mistral/ministral-8b", messages=[{"role": "user", "content": prompt}] ) return response.choices[0].message.content.strip() # --- Main Logic --- def process_awr(awr_text, correctness_threshold, performance_test_mode, exadata_model, rack_size): if not awr_text.strip(): return "No AWR report provided.", "", "" answer = analyze_awr(awr_text, performance_test_mode, exadata_model, rack_size) rating_text = rate_answer_rater("AWR Analysis", answer) stars = 0 match = re.search(r"(\d+)", rating_text) if match: stars = int(match.group(1)) if stars < correctness_threshold: answer_retry = analyze_awr(awr_text, performance_test_mode, exadata_model, rack_size) rating_text_retry = rate_answer_rater("AWR Analysis (Retry)", answer_retry) with open(log_filename, "a", encoding="utf-8") as log_file: log_file.write(f"\n---\n{datetime.now()} RETRY\nOriginal: {answer}\nRating: {rating_text}\nRetry: {answer_retry}\nRetry Rating: {rating_text_retry}\n") return answer_retry, rating_text_retry, "✅ Retry Occurred (rating below threshold)" else: with open(log_filename, "a", encoding="utf-8") as log_file: log_file.write(f"\n---\n{datetime.now()} SUCCESS\nAnswer: {answer}\nRating: {rating_text}\n") return answer, rating_text, "✅ Accepted on first try" # --- Gradio UI --- with gr.Blocks() as demo: gr.Markdown("## 📊 Oracle AWR Analyzer (AI + Rating + Exadata Gap Analysis)") awr_text = gr.Textbox(label="Paste AWR Report (HTML or TXT)", lines=30, placeholder="Paste full AWR here...") threshold = gr.Slider(0, 5, value=3, step=1, label="Correctness Threshold (Stars for Retry)") performance_test_mode = gr.Checkbox(label="Performance Test Mode") exadata_model = gr.Dropdown(choices=["X7", "X8", "X9", "X10", "X11M"], label="Exadata Model", visible=False) rack_size = gr.Dropdown(choices=["Quarter Rack", "Half Rack", "Full Rack"], label="Rack Size", visible=False) def toggle_visibility(mode): return gr.update(visible=mode), gr.update(visible=mode) performance_test_mode.change(toggle_visibility, inputs=performance_test_mode, outputs=[exadata_model, rack_size]) analyze_btn = gr.Button("Analyze AWR") output = gr.Textbox(label="AWR Analysis Result", lines=15) rating = gr.Textbox(label="Rater Rating + Explanation", lines=4) retry_status = gr.Textbox(label="Retry Status") analyze_btn.click(process_awr, inputs=[awr_text, threshold, performance_test_mode, exadata_model, rack_size], outputs=[output, rating, retry_status]) demo.launch(share=True)