File size: 2,488 Bytes
59f70d4
 
 
 
 
 
 
 
 
0c10235
 
59f70d4
 
 
 
 
 
0c10235
59f70d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c10235
 
 
 
59f70d4
18e3952
0c10235
 
59f70d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5755710
0c10235
59f70d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c10235
59f70d4
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
# app.py

# Import the necessary classes and functions from smolagents
from smolagents import CodeAgent, HfApiModel, load_tool, tool

# Standard library imports
import yaml

# External imports
import torch
from transformers import pipeline

# Import custom final answer tool and Gradio UI
from tools.final_answer import FinalAnswerTool
from Gradio_UI import GradioUI

# Initialize the Transformer-based sentiment analysis pipeline
sentiment_pipeline = pipeline("sentiment-analysis")

@tool
def my_custom_tool(arg1: str, arg2: int) -> str:
    """A tool that does nothing yet 

    Args:

        arg1: the first argument

        arg2: the second argument

    """
    return "What magic will you build?"

@tool
def advanced_sentiment_tool(text: str) -> str:
    """A tool that uses a pre-trained transformer model to do sentiment analysis.

    Args:

        text: The text to analyze for sentiment.

    """

    analysis = sentiment_pipeline(text)
    label = analysis[0]['label']
    score = analysis[0]['score']
    
    #sample values that could be assigned to the above two variables:
    #label = "positive"
    #score = "0.99"
    
    return f"Sentiment: {label} (confidence: {score:.4f})"

@tool
def simple_sentiment_tool(text: str) -> str:
    """A tool that uses a pre-trained transformer model to do sentiment analysis.

    Args:

        text: The text to analyze for sentiment.

    """
    text = text.lower()
    
    if "happy" in text:
        return "Sentiment: Joyful (confidence: 1.00)"
    elif "sad" in text:
        return "Sentiment: Sorrowful (confidence: 1.00)"
    
    label = "positive"
    score = "0.99"
    
    return f"Sentiment: {label} (confidence: {score:.4f})"


# Final answer tool
final_answer = FinalAnswerTool()

# Initialize the model
model = HfApiModel(
    max_tokens=2096,
    temperature=0.5,
    model_id='Qwen/Qwen2.5-Coder-32B-Instruct',
    custom_role_conversions=None,
)

# Load prompt templates
with open("prompts.yaml", 'r') as stream:
    prompt_templates = yaml.safe_load(stream)

# Initialize the agent, including the sentiment analysis tool
agent = CodeAgent(
    model=model,
    tools=[final_answer, advanced_sentiment_tool],
    max_steps=6,
    verbosity_level=1,
    grammar=None,
    planning_interval=None,
    name=None,
    description=None,
    prompt_templates=prompt_templates
)

# Launch the Gradio UI
GradioUI(agent).launch()