Khaled Jamal
app.py
59f70d4
raw
history blame
3.51 kB
# app.py
# Import the necessary classes and functions from smolagents
from smolagents import CodeAgent, HfApiModel, load_tool, tool
# Standard library imports
import datetime
import pytz
import yaml
# External imports
# TODO: uncomment the import statements
#import torch
#from transformers import pipeline
# Import custom final answer tool and Gradio UI
from tools.final_answer import FinalAnswerTool
from Gradio_UI import GradioUI
# Initialize the Transformer-based sentiment analysis pipeline
#TODO: uncomment when testing using the real transformers
#sentiment_pipeline = pipeline("sentiment-analysis")
@tool
def my_custom_tool(arg1: str, arg2: int) -> str:
"""A tool that does nothing yet
Args:
arg1: the first argument
arg2: the second argument
"""
return "What magic will you build?"
@tool
def get_current_time_in_timezone(timezone: str) -> str:
"""A tool that fetches the current local time in a specified timezone.
Args:
timezone: A string representing a valid timezone (e.g., 'America/New_York').
"""
try:
tz = pytz.timezone(timezone)
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
return f"The current local time in {timezone} is: {local_time}"
except Exception as e:
return f"Error fetching time for timezone '{timezone}': {str(e)}"
@tool
def advanced_sentiment_tool(text: str) -> str:
"""A tool that uses a pre-trained transformer model to do sentiment analysis.
Args:
text: The text to analyze for sentiment.
"""
# TODO: uncomment later. for now test with hardcoded value first. later test using the real model
# TODO: also uncomment the import statements
#analysis = sentiment_pipeline(text)
#label = analysis[0]['label']
#score = analysis[0]['score']
label = "positive"
score = "0.99"
return f"Sentiment: {label} (confidence: {score:.4f})"
@tool
def simple_sentiment_tool(text: str) -> str:
"""A tool that uses a pre-trained transformer model to do sentiment analysis.
Args:
text: The text to analyze for sentiment.
"""
text = text.lower()
if "happy" in text:
return "Sentiment: Joyful (confidence: 1.00)"
elif "sad" in text:
return "Sentiment: Sorrowful (confidence: 1.00)"
label = "positive"
score = "0.99"
return f"Sentiment: {label} (confidence: {score:.4f})"
# Final answer tool
final_answer = FinalAnswerTool()
# Initialize the model
model = HfApiModel(
max_tokens=2096,
temperature=0.5,
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',
custom_role_conversions=None,
)
# Load an image generation tool (unrelated, just for demonstration)
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
# Load prompt templates
with open("prompts.yaml", 'r') as stream:
prompt_templates = yaml.safe_load(stream)
# Initialize the agent, including the sentiment analysis tool
agent = CodeAgent(
model=model,
# TODO: use advanced_sentiment_tool later after testing using the simpler tool is done
tools=[final_answer, simple_sentiment_tool],
max_steps=6,
verbosity_level=1,
grammar=None,
planning_interval=None,
name=None,
description=None,
prompt_templates=prompt_templates
)
# Launch the Gradio UI
GradioUI(agent).launch()