Spaces:
Running
on
Zero
Running
on
Zero
Delete demo.py
Browse files
demo.py
DELETED
@@ -1,98 +0,0 @@
|
|
1 |
-
import argparse
|
2 |
-
import os
|
3 |
-
|
4 |
-
from PIL import Image
|
5 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
-
|
7 |
-
import cv2
|
8 |
-
try:
|
9 |
-
from mmengine.visualization import Visualizer
|
10 |
-
except ImportError:
|
11 |
-
Visualizer = None
|
12 |
-
print("Warning: mmengine is not installed, visualization is disabled.")
|
13 |
-
|
14 |
-
|
15 |
-
def parse_args():
|
16 |
-
parser = argparse.ArgumentParser(description='Video Reasoning Segmentation')
|
17 |
-
parser.add_argument('image_folder', help='Path to image file')
|
18 |
-
parser.add_argument('--model_path', default="ByteDance/Sa2VA-8B")
|
19 |
-
parser.add_argument('--work-dir', default=None, help='The dir to save results.')
|
20 |
-
parser.add_argument('--text', type=str, default="<image>Please describe the video content.")
|
21 |
-
parser.add_argument('--select', type=int, default=-1)
|
22 |
-
args = parser.parse_args()
|
23 |
-
return args
|
24 |
-
|
25 |
-
|
26 |
-
def visualize(pred_mask, image_path, work_dir):
|
27 |
-
visualizer = Visualizer()
|
28 |
-
img = cv2.imread(image_path)
|
29 |
-
visualizer.set_image(img)
|
30 |
-
visualizer.draw_binary_masks(pred_mask, colors='g', alphas=0.4)
|
31 |
-
visual_result = visualizer.get_image()
|
32 |
-
|
33 |
-
output_path = os.path.join(work_dir, os.path.basename(image_path))
|
34 |
-
cv2.imwrite(output_path, visual_result)
|
35 |
-
|
36 |
-
if __name__ == "__main__":
|
37 |
-
cfg = parse_args()
|
38 |
-
model_path = cfg.model_path
|
39 |
-
model = AutoModelForCausalLM.from_pretrained(
|
40 |
-
model_path,
|
41 |
-
torch_dtype="auto",
|
42 |
-
device_map="auto",
|
43 |
-
trust_remote_code=True
|
44 |
-
)
|
45 |
-
|
46 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
47 |
-
model_path,
|
48 |
-
trust_remote_code=True
|
49 |
-
)
|
50 |
-
|
51 |
-
image_files = []
|
52 |
-
image_paths = []
|
53 |
-
image_extensions = {".jpg", ".jpeg", ".png", ".bmp", ".gif", ".tiff"}
|
54 |
-
for filename in sorted(list(os.listdir(cfg.image_folder))):
|
55 |
-
if os.path.splitext(filename)[1].lower() in image_extensions:
|
56 |
-
image_files.append(filename)
|
57 |
-
image_paths.append(os.path.join(cfg.image_folder, filename))
|
58 |
-
|
59 |
-
vid_frames = []
|
60 |
-
for img_path in image_paths:
|
61 |
-
img = Image.open(img_path).convert('RGB')
|
62 |
-
vid_frames.append(img)
|
63 |
-
|
64 |
-
|
65 |
-
if cfg.select > 0:
|
66 |
-
img_frame = vid_frames[cfg.select - 1]
|
67 |
-
|
68 |
-
print(f"Selected frame {cfg.select}")
|
69 |
-
print(f"The input is:\n{cfg.text}")
|
70 |
-
result = model.predict_forward(
|
71 |
-
image=img_frame,
|
72 |
-
text=cfg.text,
|
73 |
-
tokenizer=tokenizer,
|
74 |
-
)
|
75 |
-
else:
|
76 |
-
print(f"The input is:\n{cfg.text}")
|
77 |
-
result = model.predict_forward(
|
78 |
-
video=vid_frames,
|
79 |
-
text=cfg.text,
|
80 |
-
tokenizer=tokenizer,
|
81 |
-
)
|
82 |
-
|
83 |
-
prediction = result['prediction']
|
84 |
-
print(f"The output is:\n{prediction}")
|
85 |
-
|
86 |
-
if '[SEG]' in prediction and Visualizer is not None:
|
87 |
-
_seg_idx = 0
|
88 |
-
pred_masks = result['prediction_masks'][_seg_idx]
|
89 |
-
for frame_idx in range(len(vid_frames)):
|
90 |
-
pred_mask = pred_masks[frame_idx]
|
91 |
-
if cfg.work_dir:
|
92 |
-
os.makedirs(cfg.work_dir, exist_ok=True)
|
93 |
-
visualize(pred_mask, image_paths[frame_idx], cfg.work_dir)
|
94 |
-
else:
|
95 |
-
os.makedirs('./temp_visualize_results', exist_ok=True)
|
96 |
-
visualize(pred_mask, image_paths[frame_idx], './temp_visualize_results')
|
97 |
-
else:
|
98 |
-
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|