Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,42 +1,64 @@
|
|
|
|
1 |
import torch
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
|
|
|
4 |
model_id = "Writer/Palmyra-Med-70B-32k"
|
5 |
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
-
model =
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
attn_implementation="flash_attention_2",
|
13 |
-
)
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
"role": "system",
|
18 |
-
"content": "You are a highly knowledgeable and experienced expert in the healthcare and biomedical field, possessing extensive medical knowledge and practical expertise.",
|
19 |
-
},
|
20 |
-
{
|
21 |
-
"role": "user",
|
22 |
-
"content": "Does danzhi Xiaoyao San ameliorate depressive-like behavior by shifting toward serotonin via the downregulation of hippocampal indoleamine 2,3-dioxygenase?",
|
23 |
-
},
|
24 |
-
]
|
25 |
-
|
26 |
-
input_ids = tokenizer.apply_chat_template(
|
27 |
-
messages, tokenize=True, add_generation_prompt=True, return_tensors="pt"
|
28 |
)
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
-
|
38 |
-
|
|
|
39 |
|
40 |
-
output_text = tokenizer.decode(output_id[0][input_ids.shape[1]
|
41 |
|
42 |
-
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
import torch
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
|
5 |
+
# Define the model and tokenizer
|
6 |
model_id = "Writer/Palmyra-Med-70B-32k"
|
7 |
|
8 |
+
@st.cache(allow_output_mutation=True)
|
9 |
+
def load_model():
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
11 |
+
model = AutoModelForCausalLM.from_pretrained(
|
12 |
+
model_id,
|
13 |
+
torch_dtype=torch.float16,
|
14 |
+
device_map="auto",
|
15 |
+
attn_implementation="flash_attention_2",
|
16 |
+
)
|
17 |
+
return tokenizer, model
|
18 |
|
19 |
+
tokenizer, model = load_model()
|
20 |
+
|
21 |
+
# Define Streamlit app
|
22 |
+
st.title("Medical Query Model")
|
|
|
|
|
23 |
|
24 |
+
st.write(
|
25 |
+
"You are interacting with a highly knowledgeable medical model. Enter your medical question below:"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
)
|
27 |
|
28 |
+
user_input = st.text_area("Your Question")
|
29 |
+
|
30 |
+
if st.button("Get Response"):
|
31 |
+
if user_input:
|
32 |
+
# Prepare input for the model
|
33 |
+
messages = [
|
34 |
+
{
|
35 |
+
"role": "system",
|
36 |
+
"content": "You are a highly knowledgeable and experienced expert in the healthcare and biomedical field, possessing extensive medical knowledge and practical expertise.",
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"role": "user",
|
40 |
+
"content": user_input,
|
41 |
+
},
|
42 |
+
]
|
43 |
+
|
44 |
+
input_ids = tokenizer.apply_chat_template(
|
45 |
+
messages, tokenize=True, add_generation_prompt=True, return_tensors="pt"
|
46 |
+
)
|
47 |
+
|
48 |
+
gen_conf = {
|
49 |
+
"max_new_tokens": 256,
|
50 |
+
"eos_token_id": [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("")],
|
51 |
+
"temperature": 0.0,
|
52 |
+
"top_p": 0.9,
|
53 |
+
}
|
54 |
|
55 |
+
# Generate response
|
56 |
+
with torch.no_grad():
|
57 |
+
output_id = model.generate(input_ids, **gen_conf)
|
58 |
|
59 |
+
output_text = tokenizer.decode(output_id[0][input_ids.shape[1]:], skip_special_tokens=True)
|
60 |
|
61 |
+
st.write("Response:")
|
62 |
+
st.write(output_text)
|
63 |
+
else:
|
64 |
+
st.warning("Please enter a question.")
|