File size: 3,060 Bytes
9a6970e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer
from huggingface_hub import hf_hub_download
import gradio as gr

# --- import your architecture ---
# Make sure this file is in the repo (e.g., models/deberta_lstm_classifier.py)
# and update the import path accordingly.
from model import DeBERTaLSTMClassifier  # <-- your class

# --------- Config ----------
REPO_ID = "khoa-done/phishing-detector"       # HF repo that holds the checkpoint
CKPT_NAME = "deberta_lstm_checkpoint.pt"      # the .pt file name
MODEL_NAME = "microsoft/deberta-base"         # base tokenizer/backbone
LABELS = ["benign", "phishing"]               # adjust to your classes

# If your checkpoint contains hyperparams, you can fetch them like:
# checkpoint.get("config") or checkpoint.get("model_args")
# and pass into DeBERTaLSTMClassifier(**model_args)

# --------- Load model/tokenizer once (global) ----------
device = "cuda" if torch.cuda.is_available() else "cpu"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)

ckpt_path = hf_hub_download(repo_id=REPO_ID, filename=CKPT_NAME)
checkpoint = torch.load(ckpt_path, map_location=device)

# If you saved hyperparams in the checkpoint, use them:
model_args = checkpoint.get("model_args", {})  # e.g., {"lstm_hidden":256, "num_labels":2, ...}
model = DeBERTaLSTMClassifier(**model_args)
model.load_state_dict(checkpoint["model_state_dict"])
model.to(device).eval()

# --------- Inference function ----------
def predict_fn(text: str):
    if not text or not text.strip():
        return {"error": "Please enter a URL or text."}

    # Tokenize
    inputs = tokenizer(
        text,
        return_tensors="pt",
        truncation=True,
        padding=True,        # single example -> becomes [1, seq_len]
        max_length=256       # adjust as used during training
    )
    # DeBERTa typically doesn't use token_type_ids
    inputs.pop("token_type_ids", None)
    # Move to device
    inputs = {k: v.to(device) for k, v in inputs.items()}

    with torch.no_grad():
        logits = model(**inputs)  # your model.forward should accept (input_ids, attention_mask)
        probs = F.softmax(logits, dim=-1).squeeze(0).tolist()

    # Build label->prob mapping for Gradio Label output
    # If LABELS length doesn't match logits dim, just return raw list
    if len(LABELS) == len(probs):
        return {LABELS[i]: float(probs[i]) for i in range(len(LABELS))}
    else:
        return {f"class_{i}": float(p) for i, p in enumerate(probs)}

# --------- Gradio UI ----------
demo = gr.Interface(
    fn=predict_fn,
    inputs=gr.Textbox(label="URL or text", placeholder="e.g., http://suspicious-site.example"),
    outputs=gr.Label(label="Prediction"),
    title="Phishing Detector (DeBERTa + LSTM)",
    description="Enter a URL/text. The model outputs class probabilities.",
    examples=[
        ["http://rendmoiunserviceeee.com"],
        ["https://www.google.com"],
        ["https://mail-secure-login-verify.example/path?token=..."]
    ]
)

if __name__ == "__main__":
    demo.launch()