File size: 6,668 Bytes
c034a74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3f5ff0
ff704b5
 
 
 
d0ae17f
c034a74
6f1334b
c034a74
 
 
 
ff704b5
c034a74
 
 
 
 
 
 
908288f
 
c034a74
a318fb7
c034a74
a318fb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c034a74
a318fb7
 
 
 
 
 
 
 
 
 
 
908288f
e3f5ff0
 
ff704b5
 
e3f5ff0
c034a74
 
 
 
 
 
 
 
 
 
908288f
e3f5ff0
 
908288f
c034a74
 
e3f5ff0
 
 
fce7c66
e3f5ff0
c870bf1
 
 
c034a74
d0ae17f
c870bf1
c034a74
fce7c66
c870bf1
fce7c66
d0ae17f
 
fce7c66
d0ae17f
fce7c66
 
d0ae17f
fce7c66
 
 
 
d0ae17f
fce7c66
e3f5ff0
d0ae17f
e3f5ff0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
# from fastapi import FastAPI, Response
# from fastapi.responses import FileResponse
# from kokoro import KPipeline
# import soundfile as sf
# import os
# import numpy as np
# import torch 
# from huggingface_hub import InferenceClient

# def llm_chat_response(text):
#     HF_TOKEN = os.getenv("HF_TOKEN")
#     client = InferenceClient(api_key=HF_TOKEN)
#     messages = [
# 	{
# 		"role": "user",
# 		"content": [
# 			{
# 				"type": "text",
# 				"text": text + str('describe in one line only')
# 			} #,
# 			# {
# 			# 	"type": "image_url",
# 			# 	"image_url": {
# 			# 		"url": "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg"
# 			# 	}
# 			# }
#             ]
# 	}
#     ]

#     response_from_llama = client.chat.completions.create(
#     model="meta-llama/Llama-3.2-11B-Vision-Instruct", 
# 	messages=messages, 
# 	max_tokens=500)

#     return response_from_llama.choices[0].message['content']

# app = FastAPI()

# # Initialize pipeline once at startup
# pipeline = KPipeline(lang_code='a')

# @app.post("/generate")
# async def generate_audio(text: str, voice: str = "af_heart", speed: float = 1.0):
    
#     text_reply = llm_chat_response(text)
    
#     # Generate audio
#     generator = pipeline(
#         text_reply, 
#         voice=voice,
#         speed=speed,
#         split_pattern=r'\n+'
#     )
    
#     # # Save first segment only for demo
#     # for i, (gs, ps, audio) in enumerate(generator):
#     #     sf.write(f"output_{i}.wav", audio, 24000)
#     #     return FileResponse(
#     #         f"output_{i}.wav",
#     #         media_type="audio/wav",
#     #         filename="output.wav"
#     #     )
    
#     # return Response("No audio generated", status_code=400)


#     # Process only the first segment for demo
#     for i, (gs, ps, audio) in enumerate(generator):

#         # Convert PyTorch tensor to NumPy array
#         audio_numpy = audio.cpu().numpy()
#         # Convert to 16-bit PCM
        
#         # Ensure the audio is in the range [-1, 1]
#         audio_numpy = np.clip(audio_numpy, -1, 1)
#         # Convert to 16-bit signed integers
#         pcm_data = (audio_numpy * 32767).astype(np.int16)
        
#         # Convert to bytes (automatically uses row-major order)
#         raw_audio = pcm_data.tobytes()
        
#         # Return PCM data with minimal necessary headers
#         return Response(
#             content=raw_audio,
#             media_type="application/octet-stream",
#             headers={
#                 "Content-Disposition": f'attachment; filename="output.pcm"',
#                 "X-Sample-Rate": "24000",
#                 "X-Bits-Per-Sample": "16",
#                 "X-Endianness": "little"
#             }
#         )
    
#     return Response("No audio generated", status_code=400)



from fastapi import FastAPI, Response
from fastapi.responses import FileResponse
from kokoro import KPipeline
import soundfile as sf
import os
import numpy as np
import torch
from huggingface_hub import InferenceClient
from pydantic import BaseModel
import base64
from io import BytesIO
from PIL import Image

class TextImageRequest(BaseModel):
    text: str = None
    image_base64: str = None
    voice: str = "af_heart"
    speed: float = 1.0

def llm_chat_response(text, image_base64=None):
    HF_TOKEN = os.getenv("HF_TOKEN")
    client = InferenceClient(api_key=HF_TOKEN)
    
    # Create a proper conversational format as required by the API
    if image_base64:
        # For image + text, we need to use the conversation format
        messages = [
            {
                "role": "user",
                "content": [
                    {
                        "type": "text",
                        "text": text if text else "Describe what you see in the image"
                    },
                    {
                        "type": "image",
                        "image": {
                            "data": image_base64
                        }
                    }
                ]
            }
        ]
    else:
        # Text only
        messages = [
            {
                "role": "user",
                "content": [
                    {
                        "type": "text",
                        "text": text + " Describe in one line only."
                    }
                ]
            }
        ]
    
    try:
        response_from_llama = client.chat.completions.create(
            model="meta-llama/Llama-3.2-11B-Vision-Instruct",
            messages=messages,
            max_tokens=500
        )
        return response_from_llama.choices[0].message['content']
    except Exception as e:
        print(f"Error calling LLM API: {e}")
        # Fallback response in case of error
        return "I couldn't process that image. Please try again with a different image or text query."

app = FastAPI()
# Initialize pipeline once at startup
pipeline = KPipeline(lang_code='a')

@app.post("/generate")
async def generate_audio(request: TextImageRequest):
    # If no text is provided but image is provided, use default prompt
    user_text = request.text
    if user_text is None and request.image_base64:
        user_text = "Describe what you see in the image"
    elif user_text is None:
        user_text = ""
        
    # Generate response using text and image if provided
    text_reply = llm_chat_response(user_text, request.image_base64)
    
    # Generate audio
    generator = pipeline(
        text_reply, 
        voice=request.voice, 
        speed=request.speed, 
        split_pattern=r'\n+'
    )
    
    # Process only the first segment for demo
    for i, (gs, ps, audio) in enumerate(generator):
        # Convert PyTorch tensor to NumPy array
        audio_numpy = audio.cpu().numpy()
        
        # Convert to 16-bit PCM
        # Ensure the audio is in the range [-1, 1]
        audio_numpy = np.clip(audio_numpy, -1, 1)
        
        # Convert to 16-bit signed integers
        pcm_data = (audio_numpy * 32767).astype(np.int16)
        
        # Convert to bytes (automatically uses row-major order)
        raw_audio = pcm_data.tobytes()
        
        # Return PCM data with minimal necessary headers
        return Response(
            content=raw_audio,
            media_type="application/octet-stream",
            headers={
                "Content-Disposition": f'attachment; filename="output.pcm"',
                "X-Sample-Rate": "24000",
                "X-Bits-Per-Sample": "16",
                "X-Endianness": "little"
            }
        )
    
    return Response("No audio generated", status_code=400)