Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -94,20 +94,19 @@
|
|
94 |
|
95 |
# return Response("No audio generated", status_code=400)
|
96 |
|
97 |
-
from fastapi import FastAPI, Response, HTTPException
|
98 |
-
from fastapi.responses import
|
|
|
99 |
from kokoro import KPipeline
|
100 |
-
import soundfile as sf
|
101 |
import os
|
102 |
import numpy as np
|
103 |
import torch
|
104 |
from huggingface_hub import InferenceClient
|
105 |
from pydantic import BaseModel
|
106 |
import base64
|
107 |
-
from io import BytesIO
|
108 |
-
from PIL import Image
|
109 |
import logging
|
110 |
from typing import Optional
|
|
|
111 |
|
112 |
# Set up logging
|
113 |
logging.basicConfig(level=logging.INFO)
|
@@ -118,14 +117,13 @@ class TextImageRequest(BaseModel):
|
|
118 |
image_base64: Optional[str] = None
|
119 |
voice: str = "af_heart" # Default voice that we know exists
|
120 |
speed: float = 1.0
|
121 |
-
|
122 |
# List of known available voices - update this based on what's actually available
|
123 |
AVAILABLE_VOICES = ["af_heart"] # Add more voices as they become available
|
124 |
-
|
125 |
-
# Validate that the voice exists
|
126 |
def validate_voice(self):
|
127 |
if self.voice not in self.AVAILABLE_VOICES:
|
128 |
-
return "af_heart" # Default to a
|
129 |
return self.voice
|
130 |
|
131 |
class AudioResponse(BaseModel):
|
@@ -143,8 +141,14 @@ app = FastAPI(
|
|
143 |
version="1.0.0"
|
144 |
)
|
145 |
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
def llm_chat_response(text, image_base64=None):
|
147 |
-
"""
|
148 |
try:
|
149 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
150 |
logger.info("Checking HF_TOKEN...")
|
@@ -154,98 +158,92 @@ def llm_chat_response(text, image_base64=None):
|
|
154 |
|
155 |
logger.info("Initializing InferenceClient...")
|
156 |
client = InferenceClient(
|
157 |
-
provider="
|
158 |
api_key=HF_TOKEN
|
159 |
)
|
160 |
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
messages = [
|
168 |
-
{
|
169 |
-
"role": "user",
|
170 |
-
"content": [
|
171 |
-
{
|
172 |
-
"type": "text",
|
173 |
-
"text": prompt
|
174 |
-
},
|
175 |
-
{
|
176 |
-
"type": "image_url",
|
177 |
-
"image_url": {
|
178 |
-
"url": f"data:image/jpeg;base64,{image_base64}"
|
179 |
-
}
|
180 |
-
}
|
181 |
-
]
|
182 |
-
}
|
183 |
-
]
|
184 |
-
else:
|
185 |
-
logger.info("Processing text-only request")
|
186 |
-
messages = [
|
187 |
-
{
|
188 |
-
"role": "user",
|
189 |
-
"content": text + " Describe in one line only."
|
190 |
-
}
|
191 |
-
]
|
192 |
-
|
193 |
-
logger.info("Sending request to model...")
|
194 |
-
# Log the exact message structure we're sending
|
195 |
-
logger.info(f"Message structure: {messages}")
|
196 |
-
|
197 |
-
# Use the exact model name and parameters from the sample
|
198 |
-
completion = client.chat.completions.create(
|
199 |
-
model="meta-llama/Llama-3.2-11B-Vision-Instruct",
|
200 |
-
messages=messages,
|
201 |
-
max_tokens=500
|
202 |
-
)
|
203 |
-
|
204 |
-
logger.info(f"Received response from model")
|
205 |
-
|
206 |
-
# Very simple response handling exactly like the sample code
|
207 |
-
logger.info(f"Model response received: {completion}")
|
208 |
-
|
209 |
try:
|
210 |
-
|
211 |
-
response = completion.choices[0].message.content
|
212 |
-
logger.info(f"Extracted response content: {response}")
|
213 |
-
return response
|
214 |
except Exception as e:
|
215 |
-
logger.error(f"Error
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
230 |
except Exception as e:
|
231 |
-
logger.error(f"Error
|
232 |
-
|
233 |
-
|
|
|
|
|
|
|
|
|
|
|
234 |
|
235 |
except Exception as e:
|
236 |
logger.error(f"Error in llm_chat_response: {str(e)}")
|
237 |
raise HTTPException(status_code=500, detail=str(e))
|
238 |
|
239 |
-
# Initialize pipeline once at startup
|
240 |
try:
|
241 |
logger.info("Initializing KPipeline...")
|
242 |
pipeline = KPipeline(lang_code='a')
|
243 |
logger.info("KPipeline initialized successfully")
|
244 |
except Exception as e:
|
245 |
logger.error(f"Failed to initialize KPipeline: {str(e)}")
|
246 |
-
#
|
247 |
|
248 |
-
@app.post("/generate",
|
249 |
200: {"content": {"application/octet-stream": {}}},
|
250 |
400: {"model": ErrorResponse},
|
251 |
500: {"model": ErrorResponse}
|
@@ -254,14 +252,12 @@ async def generate_audio(request: TextImageRequest):
|
|
254 |
"""
|
255 |
Generate audio from text and optionally analyze an image.
|
256 |
|
257 |
-
- If text is provided,
|
258 |
-
- If image is provided,
|
259 |
-
-
|
260 |
"""
|
261 |
try:
|
262 |
-
logger.info(
|
263 |
-
|
264 |
-
# If no text is provided but image is provided, use default prompt
|
265 |
user_text = request.text if request.text is not None else ""
|
266 |
if not user_text and request.image_base64:
|
267 |
user_text = "Describe what you see in the image"
|
@@ -272,17 +268,14 @@ async def generate_audio(request: TextImageRequest):
|
|
272 |
content={"error": "Request must include either text or image_base64"}
|
273 |
)
|
274 |
|
275 |
-
# Generate response using text and image if provided
|
276 |
logger.info("Getting LLM response...")
|
277 |
text_reply = llm_chat_response(user_text, request.image_base64)
|
278 |
logger.info(f"LLM response: {text_reply}")
|
279 |
|
280 |
-
# Validate voice parameter
|
281 |
validated_voice = request.validate_voice()
|
282 |
if validated_voice != request.voice:
|
283 |
logger.warning(f"Requested voice '{request.voice}' not available, using '{validated_voice}' instead")
|
284 |
|
285 |
-
# Generate audio
|
286 |
logger.info(f"Generating audio using voice={validated_voice}, speed={request.speed}")
|
287 |
try:
|
288 |
generator = pipeline(
|
@@ -292,28 +285,20 @@ async def generate_audio(request: TextImageRequest):
|
|
292 |
split_pattern=r'\n+'
|
293 |
)
|
294 |
|
295 |
-
# Process only the first segment for demo
|
296 |
for i, (gs, ps, audio) in enumerate(generator):
|
297 |
logger.info(f"Audio generated successfully: segment {i}")
|
298 |
-
|
299 |
# Convert PyTorch tensor to NumPy array
|
300 |
audio_numpy = audio.cpu().numpy()
|
301 |
-
|
302 |
-
# Convert to 16-bit PCM
|
303 |
-
# Ensure the audio is in the range [-1, 1]
|
304 |
audio_numpy = np.clip(audio_numpy, -1, 1)
|
305 |
-
# Convert to 16-bit signed integers
|
306 |
pcm_data = (audio_numpy * 32767).astype(np.int16)
|
307 |
-
|
308 |
-
# Convert to bytes (automatically uses row-major order)
|
309 |
raw_audio = pcm_data.tobytes()
|
310 |
|
311 |
-
# Return PCM data with minimal necessary headers
|
312 |
return Response(
|
313 |
content=raw_audio,
|
314 |
media_type="application/octet-stream",
|
315 |
headers={
|
316 |
-
"Content-Disposition":
|
317 |
"X-Sample-Rate": "24000",
|
318 |
"X-Bits-Per-Sample": "16",
|
319 |
"X-Endianness": "little"
|
@@ -342,18 +327,18 @@ async def generate_audio(request: TextImageRequest):
|
|
342 |
|
343 |
@app.get("/")
|
344 |
async def root():
|
345 |
-
return {"message": "Welcome to the Text-to-Speech API with Vision Support. Use POST /generate
|
346 |
|
347 |
@app.exception_handler(404)
|
348 |
-
async def not_found_handler(request, exc):
|
349 |
return JSONResponse(
|
350 |
status_code=404,
|
351 |
content={"error": "Endpoint not found. Please use POST /generate for queries."}
|
352 |
)
|
353 |
|
354 |
@app.exception_handler(405)
|
355 |
-
async def method_not_allowed_handler(request, exc):
|
356 |
return JSONResponse(
|
357 |
status_code=405,
|
358 |
content={"error": "Method not allowed. Please check the API documentation."}
|
359 |
-
)
|
|
|
94 |
|
95 |
# return Response("No audio generated", status_code=400)
|
96 |
|
97 |
+
from fastapi import FastAPI, Response, HTTPException, Request
|
98 |
+
from fastapi.responses import JSONResponse
|
99 |
+
from fastapi.staticfiles import StaticFiles
|
100 |
from kokoro import KPipeline
|
|
|
101 |
import os
|
102 |
import numpy as np
|
103 |
import torch
|
104 |
from huggingface_hub import InferenceClient
|
105 |
from pydantic import BaseModel
|
106 |
import base64
|
|
|
|
|
107 |
import logging
|
108 |
from typing import Optional
|
109 |
+
import uuid
|
110 |
|
111 |
# Set up logging
|
112 |
logging.basicConfig(level=logging.INFO)
|
|
|
117 |
image_base64: Optional[str] = None
|
118 |
voice: str = "af_heart" # Default voice that we know exists
|
119 |
speed: float = 1.0
|
120 |
+
|
121 |
# List of known available voices - update this based on what's actually available
|
122 |
AVAILABLE_VOICES = ["af_heart"] # Add more voices as they become available
|
123 |
+
|
|
|
124 |
def validate_voice(self):
|
125 |
if self.voice not in self.AVAILABLE_VOICES:
|
126 |
+
return "af_heart" # Default to a known available voice
|
127 |
return self.voice
|
128 |
|
129 |
class AudioResponse(BaseModel):
|
|
|
141 |
version="1.0.0"
|
142 |
)
|
143 |
|
144 |
+
# Create and mount static images directory so images are accessible via URL
|
145 |
+
STATIC_DIR = "static_images"
|
146 |
+
if not os.path.exists(STATIC_DIR):
|
147 |
+
os.makedirs(STATIC_DIR)
|
148 |
+
app.mount("/static", StaticFiles(directory=STATIC_DIR), name="static")
|
149 |
+
|
150 |
def llm_chat_response(text, image_base64=None):
|
151 |
+
"""Get responses from LLM with text and optionally an image input."""
|
152 |
try:
|
153 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
154 |
logger.info("Checking HF_TOKEN...")
|
|
|
158 |
|
159 |
logger.info("Initializing InferenceClient...")
|
160 |
client = InferenceClient(
|
161 |
+
provider="hf-inference", # Using correct provider as per sample
|
162 |
api_key=HF_TOKEN
|
163 |
)
|
164 |
|
165 |
+
if image_base64:
|
166 |
+
logger.info("Processing request with image")
|
167 |
+
# Save the base64 image to the static folder
|
168 |
+
filename = f"{uuid.uuid4()}.jpg"
|
169 |
+
image_path = os.path.join(STATIC_DIR, filename)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
try:
|
171 |
+
image_data = base64.b64decode(image_base64)
|
|
|
|
|
|
|
172 |
except Exception as e:
|
173 |
+
logger.error(f"Error decoding base64 image: {str(e)}")
|
174 |
+
raise HTTPException(status_code=400, detail="Invalid base64 image data")
|
175 |
+
with open(image_path, "wb") as f:
|
176 |
+
f.write(image_data)
|
177 |
+
# Construct image URL (assumes BASE_URL environment variable or defaults to localhost)
|
178 |
+
base_url = os.getenv("BASE_URL", "http://localhost:8000")
|
179 |
+
image_url = f"{base_url}/static/{filename}"
|
180 |
+
prompt = text if text else "Describe this image in one sentence."
|
181 |
+
messages = [
|
182 |
+
{
|
183 |
+
"role": "user",
|
184 |
+
"content": [
|
185 |
+
{
|
186 |
+
"type": "text",
|
187 |
+
"text": prompt
|
188 |
+
},
|
189 |
+
{
|
190 |
+
"type": "image_url",
|
191 |
+
"image_url": {
|
192 |
+
"url": image_url
|
193 |
+
}
|
194 |
+
}
|
195 |
+
]
|
196 |
+
}
|
197 |
+
]
|
198 |
+
else:
|
199 |
+
logger.info("Processing text-only request")
|
200 |
+
messages = [
|
201 |
+
{
|
202 |
+
"role": "user",
|
203 |
+
"content": text + " Describe in one line only."
|
204 |
+
}
|
205 |
+
]
|
206 |
+
|
207 |
+
logger.info("Sending request to model...")
|
208 |
+
logger.info(f"Message structure: {messages}")
|
209 |
+
|
210 |
+
completion = client.chat.completions.create(
|
211 |
+
model="meta-llama/Llama-3.2-11B-Vision-Instruct",
|
212 |
+
messages=messages,
|
213 |
+
max_tokens=500
|
214 |
+
)
|
215 |
+
|
216 |
+
logger.info("Received response from model")
|
217 |
+
logger.info(f"Model response received: {completion}")
|
218 |
+
|
219 |
+
try:
|
220 |
+
response = completion.choices[0].message.content
|
221 |
+
logger.info(f"Extracted response content: {response}")
|
222 |
+
return response
|
223 |
except Exception as e:
|
224 |
+
logger.error(f"Error extracting message content: {str(e)}")
|
225 |
+
try:
|
226 |
+
if hasattr(completion.choices[0], "message") and hasattr(completion.choices[0].message, "content"):
|
227 |
+
return completion.choices[0].message.content
|
228 |
+
return completion.choices[0]["message"]["content"]
|
229 |
+
except Exception as e2:
|
230 |
+
logger.error(f"All extraction methods failed: {str(e2)}")
|
231 |
+
return "I couldn't process that input. Please try again with a different query."
|
232 |
|
233 |
except Exception as e:
|
234 |
logger.error(f"Error in llm_chat_response: {str(e)}")
|
235 |
raise HTTPException(status_code=500, detail=str(e))
|
236 |
|
237 |
+
# Initialize the audio generation pipeline once at startup
|
238 |
try:
|
239 |
logger.info("Initializing KPipeline...")
|
240 |
pipeline = KPipeline(lang_code='a')
|
241 |
logger.info("KPipeline initialized successfully")
|
242 |
except Exception as e:
|
243 |
logger.error(f"Failed to initialize KPipeline: {str(e)}")
|
244 |
+
# The app starts regardless but logs the error
|
245 |
|
246 |
+
@app.post("/generate", responses={
|
247 |
200: {"content": {"application/octet-stream": {}}},
|
248 |
400: {"model": ErrorResponse},
|
249 |
500: {"model": ErrorResponse}
|
|
|
252 |
"""
|
253 |
Generate audio from text and optionally analyze an image.
|
254 |
|
255 |
+
- If text is provided, it is used as input.
|
256 |
+
- If an image is provided (base64), it is saved and a URL is generated for processing.
|
257 |
+
- The LLM response is then converted to speech.
|
258 |
"""
|
259 |
try:
|
260 |
+
logger.info("Received audio generation request")
|
|
|
|
|
261 |
user_text = request.text if request.text is not None else ""
|
262 |
if not user_text and request.image_base64:
|
263 |
user_text = "Describe what you see in the image"
|
|
|
268 |
content={"error": "Request must include either text or image_base64"}
|
269 |
)
|
270 |
|
|
|
271 |
logger.info("Getting LLM response...")
|
272 |
text_reply = llm_chat_response(user_text, request.image_base64)
|
273 |
logger.info(f"LLM response: {text_reply}")
|
274 |
|
|
|
275 |
validated_voice = request.validate_voice()
|
276 |
if validated_voice != request.voice:
|
277 |
logger.warning(f"Requested voice '{request.voice}' not available, using '{validated_voice}' instead")
|
278 |
|
|
|
279 |
logger.info(f"Generating audio using voice={validated_voice}, speed={request.speed}")
|
280 |
try:
|
281 |
generator = pipeline(
|
|
|
285 |
split_pattern=r'\n+'
|
286 |
)
|
287 |
|
|
|
288 |
for i, (gs, ps, audio) in enumerate(generator):
|
289 |
logger.info(f"Audio generated successfully: segment {i}")
|
|
|
290 |
# Convert PyTorch tensor to NumPy array
|
291 |
audio_numpy = audio.cpu().numpy()
|
292 |
+
# Clip values to range [-1, 1] and convert to 16-bit PCM
|
|
|
|
|
293 |
audio_numpy = np.clip(audio_numpy, -1, 1)
|
|
|
294 |
pcm_data = (audio_numpy * 32767).astype(np.int16)
|
|
|
|
|
295 |
raw_audio = pcm_data.tobytes()
|
296 |
|
|
|
297 |
return Response(
|
298 |
content=raw_audio,
|
299 |
media_type="application/octet-stream",
|
300 |
headers={
|
301 |
+
"Content-Disposition": 'attachment; filename="output.pcm"',
|
302 |
"X-Sample-Rate": "24000",
|
303 |
"X-Bits-Per-Sample": "16",
|
304 |
"X-Endianness": "little"
|
|
|
327 |
|
328 |
@app.get("/")
|
329 |
async def root():
|
330 |
+
return {"message": "Welcome to the Text-to-Speech API with Vision Support. Use POST /generate with 'text' and optionally 'image_base64' for queries."}
|
331 |
|
332 |
@app.exception_handler(404)
|
333 |
+
async def not_found_handler(request: Request, exc):
|
334 |
return JSONResponse(
|
335 |
status_code=404,
|
336 |
content={"error": "Endpoint not found. Please use POST /generate for queries."}
|
337 |
)
|
338 |
|
339 |
@app.exception_handler(405)
|
340 |
+
async def method_not_allowed_handler(request: Request, exc):
|
341 |
return JSONResponse(
|
342 |
status_code=405,
|
343 |
content={"error": "Method not allowed. Please check the API documentation."}
|
344 |
+
)
|