Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -95,190 +95,172 @@
|
|
95 |
# return Response("No audio generated", status_code=400)
|
96 |
|
97 |
import os
|
98 |
-
import uuid
|
99 |
-
import base64
|
100 |
import logging
|
101 |
-
|
|
|
|
|
102 |
from fastapi.responses import JSONResponse
|
103 |
-
from fastapi.staticfiles import StaticFiles
|
104 |
from pydantic import BaseModel
|
105 |
-
from typing import Optional, ClassVar, List
|
106 |
from huggingface_hub import InferenceClient
|
107 |
-
|
108 |
-
import
|
109 |
-
from kokoro import KPipeline # Your audio generation pipeline
|
110 |
|
111 |
# Set up logging
|
112 |
logging.basicConfig(level=logging.INFO)
|
113 |
logger = logging.getLogger(__name__)
|
114 |
|
115 |
-
#
|
116 |
app = FastAPI(
|
117 |
-
title="
|
118 |
-
description="
|
119 |
version="1.0.0"
|
120 |
)
|
121 |
|
122 |
-
#
|
123 |
STATIC_DIR = "static_images"
|
124 |
if not os.path.exists(STATIC_DIR):
|
125 |
os.makedirs(STATIC_DIR)
|
126 |
-
app.mount("/static", StaticFiles(directory=STATIC_DIR), name="static")
|
127 |
-
|
128 |
-
# Pydantic model for request
|
129 |
-
class TextImageRequest(BaseModel):
|
130 |
-
text: Optional[str] = None
|
131 |
-
image_base64: Optional[str] = None
|
132 |
-
voice: str = "af_heart" # Default voice
|
133 |
-
speed: float = 1.0
|
134 |
-
|
135 |
-
# Use ClassVar so that Pydantic doesn't treat this as a model field.
|
136 |
-
AVAILABLE_VOICES: ClassVar[List[str]] = ["af_heart"]
|
137 |
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
detail: Optional[str] = None
|
147 |
|
148 |
-
def llm_chat_response(
|
149 |
-
HF_TOKEN = os.getenv("HF_TOKEN")
|
150 |
-
logger.info("Checking HF_TOKEN...")
|
151 |
-
if not HF_TOKEN:
|
152 |
-
logger.error("HF_TOKEN not configured")
|
153 |
-
raise HTTPException(status_code=500, detail="HF_TOKEN not configured")
|
154 |
-
|
155 |
-
logger.info("Initializing InferenceClient...")
|
156 |
-
client = InferenceClient(
|
157 |
-
provider="hf-inference",
|
158 |
-
api_key=HF_TOKEN
|
159 |
-
)
|
160 |
-
|
161 |
-
# Save the base64-encoded image locally
|
162 |
-
filename = f"{uuid.uuid4()}.jpg"
|
163 |
-
image_path = os.path.join(STATIC_DIR, filename)
|
164 |
try:
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
base_url = os.getenv("BASE_URL", "http://localhost:8000")
|
176 |
-
image_url = f"{base_url}/static/{filename}"
|
177 |
-
|
178 |
-
# Build the message payload exactly as in the reference:
|
179 |
-
messages = [
|
180 |
-
{
|
181 |
-
"role": "user",
|
182 |
-
"content": [
|
183 |
-
{
|
184 |
-
"type": "text",
|
185 |
-
"text": prompt
|
186 |
-
},
|
187 |
-
{
|
188 |
-
"type": "image_url",
|
189 |
-
"image_url": {
|
190 |
-
"url": image_url
|
191 |
-
}
|
192 |
-
}
|
193 |
-
]
|
194 |
-
}
|
195 |
-
]
|
196 |
-
logger.info(f"Message structure: {messages}")
|
197 |
-
|
198 |
-
try:
|
199 |
-
completion = client.chat.completions.create(
|
200 |
-
model="meta-llama/Llama-3.2-11B-Vision-Instruct",
|
201 |
-
messages=messages,
|
202 |
-
max_tokens=500,
|
203 |
)
|
204 |
-
|
205 |
-
|
206 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
207 |
except Exception as e:
|
208 |
-
logger.error(f"Error
|
209 |
raise HTTPException(status_code=500, detail=str(e))
|
210 |
|
211 |
-
|
212 |
-
|
213 |
-
logger.info("Initializing KPipeline...")
|
214 |
-
pipeline = KPipeline(lang_code='a')
|
215 |
-
logger.info("KPipeline initialized successfully")
|
216 |
-
except Exception as e:
|
217 |
-
logger.error(f"Failed to initialize KPipeline: {str(e)}")
|
218 |
-
# The API will run but audio generation will fail if the pipeline is not ready.
|
219 |
-
|
220 |
-
@app.post("/generate", responses={
|
221 |
-
200: {"content": {"application/octet-stream": {}}},
|
222 |
-
400: {"model": ErrorResponse},
|
223 |
-
500: {"model": ErrorResponse}
|
224 |
-
})
|
225 |
-
async def generate_audio(request: TextImageRequest):
|
226 |
-
"""
|
227 |
-
Generate audio from a multimodal (text+image) input.
|
228 |
-
This model requires an image input.
|
229 |
-
"""
|
230 |
-
logger.info("Received generation request")
|
231 |
-
|
232 |
-
# The model requires an image; if missing, return an error.
|
233 |
-
if not request.image_base64:
|
234 |
-
raise HTTPException(status_code=400, detail="This model requires an image input.")
|
235 |
-
|
236 |
-
prompt = request.text if request.text else "Describe this image in one sentence."
|
237 |
-
logger.info("Calling the LLM model")
|
238 |
-
text_reply = llm_chat_response(prompt, request.image_base64)
|
239 |
-
logger.info(f"LLM response: {text_reply}")
|
240 |
-
|
241 |
-
validated_voice = request.validate_voice()
|
242 |
-
if validated_voice != request.voice:
|
243 |
-
logger.warning(f"Voice '{request.voice}' not available; using '{validated_voice}' instead")
|
244 |
-
|
245 |
-
# Convert the text reply to audio using the KPipeline.
|
246 |
-
logger.info(f"Generating audio using voice={validated_voice}, speed={request.speed}")
|
247 |
try:
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
audio_numpy = np.clip(audio_numpy, -1, 1)
|
257 |
-
pcm_data = (audio_numpy * 32767).astype(np.int16)
|
258 |
-
raw_audio = pcm_data.tobytes()
|
259 |
-
return Response(
|
260 |
-
content=raw_audio,
|
261 |
-
media_type="application/octet-stream",
|
262 |
-
headers={
|
263 |
-
"Content-Disposition": 'attachment; filename="output.pcm"',
|
264 |
-
"X-Sample-Rate": "24000",
|
265 |
-
"X-Bits-Per-Sample": "16",
|
266 |
-
"X-Endianness": "little"
|
267 |
-
}
|
268 |
-
)
|
269 |
-
raise HTTPException(status_code=400, detail="No audio segments generated.")
|
270 |
except Exception as e:
|
271 |
-
logger.error(f"
|
272 |
raise HTTPException(status_code=500, detail=str(e))
|
273 |
|
274 |
@app.get("/")
|
275 |
async def root():
|
276 |
-
return {"message": "Welcome to the
|
277 |
|
278 |
@app.exception_handler(404)
|
279 |
-
async def not_found_handler(request
|
280 |
-
return JSONResponse(
|
|
|
|
|
|
|
281 |
|
282 |
@app.exception_handler(405)
|
283 |
-
async def method_not_allowed_handler(request
|
284 |
-
return JSONResponse(
|
|
|
|
|
|
|
|
|
|
95 |
# return Response("No audio generated", status_code=400)
|
96 |
|
97 |
import os
|
|
|
|
|
98 |
import logging
|
99 |
+
import base64
|
100 |
+
from typing import Optional
|
101 |
+
from fastapi import FastAPI, HTTPException
|
102 |
from fastapi.responses import JSONResponse
|
|
|
103 |
from pydantic import BaseModel
|
|
|
104 |
from huggingface_hub import InferenceClient
|
105 |
+
from requests.exceptions import HTTPError
|
106 |
+
import uuid
|
|
|
107 |
|
108 |
# Set up logging
|
109 |
logging.basicConfig(level=logging.INFO)
|
110 |
logger = logging.getLogger(__name__)
|
111 |
|
112 |
+
# Initialize FastAPI app
|
113 |
app = FastAPI(
|
114 |
+
title="LLM Chat API",
|
115 |
+
description="API for getting chat responses from Llama model (supports text and image input)",
|
116 |
version="1.0.0"
|
117 |
)
|
118 |
|
119 |
+
# Directory to save images
|
120 |
STATIC_DIR = "static_images"
|
121 |
if not os.path.exists(STATIC_DIR):
|
122 |
os.makedirs(STATIC_DIR)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
|
124 |
+
# Pydantic models
|
125 |
+
class ChatRequest(BaseModel):
|
126 |
+
text: str
|
127 |
+
image_url: Optional[str] = None # In this updated version, this field is expected to be a base64 encoded image
|
128 |
|
129 |
+
class ChatResponse(BaseModel):
|
130 |
+
response: str
|
131 |
+
status: str
|
|
|
132 |
|
133 |
+
def llm_chat_response(text: str, image_base64: Optional[str] = None) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
try:
|
135 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
136 |
+
logger.info("Checking HF_TOKEN...")
|
137 |
+
if not HF_TOKEN:
|
138 |
+
logger.error("HF_TOKEN not found in environment variables")
|
139 |
+
raise HTTPException(status_code=500, detail="HF_TOKEN not configured")
|
140 |
+
|
141 |
+
logger.info("Initializing InferenceClient...")
|
142 |
+
client = InferenceClient(
|
143 |
+
provider="hf-inference", # Updated provider
|
144 |
+
api_key=HF_TOKEN
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
)
|
146 |
+
|
147 |
+
# Build the messages payload.
|
148 |
+
# For text-only queries, append a default instruction.
|
149 |
+
message_content = [{
|
150 |
+
"type": "text",
|
151 |
+
"text": text + ("" if image_base64 else " describe in one line only")
|
152 |
+
}]
|
153 |
+
|
154 |
+
if image_base64:
|
155 |
+
logger.info("Saving base64 encoded image to file...")
|
156 |
+
# Decode and save the image locally
|
157 |
+
filename = f"{uuid.uuid4()}.jpg"
|
158 |
+
image_path = os.path.join(STATIC_DIR, filename)
|
159 |
+
try:
|
160 |
+
image_data = base64.b64decode(image_base64)
|
161 |
+
except Exception as e:
|
162 |
+
logger.error(f"Error decoding image: {str(e)}")
|
163 |
+
raise HTTPException(status_code=400, detail="Invalid base64 image data")
|
164 |
+
with open(image_path, "wb") as f:
|
165 |
+
f.write(image_data)
|
166 |
+
|
167 |
+
# Construct public URL for the saved image.
|
168 |
+
# Set BASE_URL to your public URL if needed.
|
169 |
+
base_url = os.getenv("BASE_URL", "http://localhost:8000")
|
170 |
+
public_image_url = f"{base_url}/{STATIC_DIR}/{filename}"
|
171 |
+
logger.info(f"Using saved image URL: {public_image_url}")
|
172 |
+
|
173 |
+
message_content.append({
|
174 |
+
"type": "image_url",
|
175 |
+
"image_url": {"url": public_image_url}
|
176 |
+
})
|
177 |
+
|
178 |
+
messages = [{
|
179 |
+
"role": "user",
|
180 |
+
"content": message_content
|
181 |
+
}]
|
182 |
+
|
183 |
+
logger.info("Sending request to model...")
|
184 |
+
try:
|
185 |
+
completion = client.chat.completions.create(
|
186 |
+
model="meta-llama/Llama-3.2-11B-Vision-Instruct",
|
187 |
+
messages=messages,
|
188 |
+
max_tokens=500
|
189 |
+
)
|
190 |
+
except HTTPError as http_err:
|
191 |
+
logger.error(f"HTTP error occurred: {http_err.response.text}")
|
192 |
+
raise HTTPException(status_code=500, detail=http_err.response.text)
|
193 |
+
|
194 |
+
logger.info(f"Raw model response: {completion}")
|
195 |
+
|
196 |
+
if getattr(completion, "error", None):
|
197 |
+
error_details = completion.error
|
198 |
+
error_message = error_details.get("message", "Unknown error")
|
199 |
+
logger.error(f"Model returned error: {error_message}")
|
200 |
+
raise HTTPException(status_code=500, detail=f"Model returned error: {error_message}")
|
201 |
+
|
202 |
+
if not completion.choices or len(completion.choices) == 0:
|
203 |
+
logger.error("No choices returned from model.")
|
204 |
+
raise HTTPException(status_code=500, detail="Model returned no choices.")
|
205 |
+
|
206 |
+
# Extract the response message from the first choice.
|
207 |
+
choice = completion.choices[0]
|
208 |
+
response_message = None
|
209 |
+
if hasattr(choice, "message"):
|
210 |
+
response_message = choice.message
|
211 |
+
elif isinstance(choice, dict):
|
212 |
+
response_message = choice.get("message")
|
213 |
+
|
214 |
+
if not response_message:
|
215 |
+
logger.error(f"Response message is empty: {choice}")
|
216 |
+
raise HTTPException(status_code=500, detail="Model response did not include a message.")
|
217 |
+
|
218 |
+
content = None
|
219 |
+
if isinstance(response_message, dict):
|
220 |
+
content = response_message.get("content")
|
221 |
+
if content is None and hasattr(response_message, "content"):
|
222 |
+
content = response_message.content
|
223 |
+
|
224 |
+
if not content:
|
225 |
+
logger.error(f"Message content is missing: {response_message}")
|
226 |
+
raise HTTPException(status_code=500, detail="Model message did not include content.")
|
227 |
+
|
228 |
+
return content
|
229 |
+
|
230 |
except Exception as e:
|
231 |
+
logger.error(f"Error in llm_chat_response: {str(e)}")
|
232 |
raise HTTPException(status_code=500, detail=str(e))
|
233 |
|
234 |
+
@app.post("/chat", response_model=ChatResponse)
|
235 |
+
async def chat(request: ChatRequest):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
236 |
try:
|
237 |
+
logger.info(f"Received chat request with text: {request.text}")
|
238 |
+
if request.image_url:
|
239 |
+
logger.info("Image data provided.")
|
240 |
+
response = llm_chat_response(request.text, request.image_url)
|
241 |
+
return ChatResponse(response=response, status="success")
|
242 |
+
except HTTPException as he:
|
243 |
+
logger.error(f"HTTP Exception in chat endpoint: {str(he)}")
|
244 |
+
raise he
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
245 |
except Exception as e:
|
246 |
+
logger.error(f"Unexpected error in chat endpoint: {str(e)}")
|
247 |
raise HTTPException(status_code=500, detail=str(e))
|
248 |
|
249 |
@app.get("/")
|
250 |
async def root():
|
251 |
+
return {"message": "Welcome to the LLM Chat API. Use POST /chat endpoint with 'text' and optionally 'image_url' (base64 encoded) for queries."}
|
252 |
|
253 |
@app.exception_handler(404)
|
254 |
+
async def not_found_handler(request, exc):
|
255 |
+
return JSONResponse(
|
256 |
+
status_code=404,
|
257 |
+
content={"error": "Endpoint not found. Please use POST /chat for queries."}
|
258 |
+
)
|
259 |
|
260 |
@app.exception_handler(405)
|
261 |
+
async def method_not_allowed_handler(request, exc):
|
262 |
+
return JSONResponse(
|
263 |
+
status_code=405,
|
264 |
+
content={"error": "Method not allowed. Please check the API documentation."}
|
265 |
+
)
|
266 |
+
|