Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -119,51 +119,37 @@ def llm_chat_response(text, image_base64=None):
|
|
119 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
120 |
client = InferenceClient(api_key=HF_TOKEN)
|
121 |
|
122 |
-
#
|
123 |
-
|
124 |
-
|
125 |
-
messages = [
|
126 |
-
{
|
127 |
-
"role": "user",
|
128 |
-
"content": [
|
129 |
-
{
|
130 |
-
"type": "text",
|
131 |
-
"text": text if text else "Describe what you see in the image"
|
132 |
-
},
|
133 |
-
{
|
134 |
-
"type": "image",
|
135 |
-
"image": {
|
136 |
-
"data": image_base64
|
137 |
-
}
|
138 |
-
}
|
139 |
-
]
|
140 |
-
}
|
141 |
-
]
|
142 |
-
else:
|
143 |
-
# Text only
|
144 |
-
messages = [
|
145 |
-
{
|
146 |
-
"role": "user",
|
147 |
-
"content": [
|
148 |
-
{
|
149 |
-
"type": "text",
|
150 |
-
"text": text + " Describe in one line only."
|
151 |
-
}
|
152 |
-
]
|
153 |
-
}
|
154 |
-
]
|
155 |
|
156 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
response_from_llama = client.chat.completions.create(
|
158 |
model="meta-llama/Llama-3.2-11B-Vision-Instruct",
|
159 |
messages=messages,
|
160 |
max_tokens=500
|
161 |
)
|
|
|
162 |
return response_from_llama.choices[0].message['content']
|
163 |
except Exception as e:
|
164 |
print(f"Error calling LLM API: {e}")
|
165 |
# Fallback response in case of error
|
166 |
-
return "I couldn't process that
|
167 |
|
168 |
app = FastAPI()
|
169 |
# Initialize pipeline once at startup
|
|
|
119 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
120 |
client = InferenceClient(api_key=HF_TOKEN)
|
121 |
|
122 |
+
# For image + text requests, we need to use the conversational format
|
123 |
+
# with proper message structure
|
124 |
+
system_message = "You are a helpful assistant that provides concise responses."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
|
126 |
try:
|
127 |
+
if image_base64:
|
128 |
+
messages = [
|
129 |
+
{"role": "system", "content": system_message},
|
130 |
+
{"role": "user", "content": [
|
131 |
+
{"type": "text", "text": text if text else "Describe what you see in the image in one line only"},
|
132 |
+
{"type": "image", "source": {"data": f"data:image/jpeg;base64,{image_base64}"}}
|
133 |
+
]}
|
134 |
+
]
|
135 |
+
else:
|
136 |
+
messages = [
|
137 |
+
{"role": "system", "content": system_message},
|
138 |
+
{"role": "user", "content": text + " Describe in one line only."}
|
139 |
+
]
|
140 |
+
|
141 |
+
# Call the API
|
142 |
response_from_llama = client.chat.completions.create(
|
143 |
model="meta-llama/Llama-3.2-11B-Vision-Instruct",
|
144 |
messages=messages,
|
145 |
max_tokens=500
|
146 |
)
|
147 |
+
|
148 |
return response_from_llama.choices[0].message['content']
|
149 |
except Exception as e:
|
150 |
print(f"Error calling LLM API: {e}")
|
151 |
# Fallback response in case of error
|
152 |
+
return "I couldn't process that input. Please try again with a different image or text query."
|
153 |
|
154 |
app = FastAPI()
|
155 |
# Initialize pipeline once at startup
|