Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Import necessary libraries
|
2 |
+
import gradio as gr
|
3 |
+
from datasets import load_dataset
|
4 |
+
import pandas as pd
|
5 |
+
import numpy as np
|
6 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments
|
7 |
+
import torch
|
8 |
+
from sklearn.model_selection import train_test_split
|
9 |
+
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
|
10 |
+
import os
|
11 |
+
import shutil
|
12 |
+
|
13 |
+
# Load dataset once at startup
|
14 |
+
ds = load_dataset("ashraq/financial-news-articles")
|
15 |
+
df = pd.DataFrame(ds['train'])
|
16 |
+
|
17 |
+
# Simulate labels (replace with real labels in practice)
|
18 |
+
np.random.seed(42)
|
19 |
+
df['label'] = np.random.randint(0, 3, size=len(df)) # 0=neg, 1=neu, 2=pos
|
20 |
+
df['input_text'] = df['title'] + " " + df['text']
|
21 |
+
|
22 |
+
# Global variables for model and tokenizer
|
23 |
+
model = None
|
24 |
+
tokenizer = None
|
25 |
+
sentiment_map = {0: "Negative", 1: "Neutral", 2: "Positive"}
|
26 |
+
|
27 |
+
# Function to tokenize dataset
|
28 |
+
def tokenize_function(examples, tokenizer):
|
29 |
+
return tokenizer(examples['input_text'], padding="max_length", truncation=True, max_length=512)
|
30 |
+
|
31 |
+
# Function to compute metrics
|
32 |
+
def compute_metrics(pred):
|
33 |
+
labels = pred.label_ids
|
34 |
+
preds = np.argmax(pred.predictions, axis=1)
|
35 |
+
precision, recall, f1, _ = precision_recall_fscore_support(labels, preds, average='weighted')
|
36 |
+
acc = accuracy_score(labels, preds)
|
37 |
+
return {'accuracy': acc, 'f1': f1, 'precision': precision, 'recall': recall}
|
38 |
+
|
39 |
+
# Train the model with user-defined parameters
|
40 |
+
def train_model(learning_rate, epochs, batch_size, save_path):
|
41 |
+
global model, tokenizer
|
42 |
+
|
43 |
+
# Split dataset
|
44 |
+
train_df, test_df = train_test_split(df, test_size=0.2, random_state=42)
|
45 |
+
|
46 |
+
# Load tokenizer and model
|
47 |
+
model_name = "bert-base-uncased"
|
48 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
49 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=3)
|
50 |
+
|
51 |
+
# Prepare datasets
|
52 |
+
train_dataset = Dataset.from_pandas(train_df[['input_text', 'label']])
|
53 |
+
test_dataset = Dataset.from_pandas(test_df[['input_text', 'label']])
|
54 |
+
train_dataset = train_dataset.map(lambda x: tokenize_function(x, tokenizer), batched=True)
|
55 |
+
test_dataset = test_dataset.map(lambda x: tokenize_function(x, tokenizer), batched=True)
|
56 |
+
train_dataset.set_format('torch', columns=['input_ids', 'attention_mask', 'label'])
|
57 |
+
test_dataset.set_format('torch', columns=['input_ids', 'attention_mask', 'label'])
|
58 |
+
|
59 |
+
# Training arguments
|
60 |
+
training_args = TrainingArguments(
|
61 |
+
output_dir="./temp_model",
|
62 |
+
evaluation_strategy="epoch",
|
63 |
+
learning_rate=learning_rate,
|
64 |
+
per_device_train_batch_size=batch_size,
|
65 |
+
per_device_eval_batch_size=batch_size,
|
66 |
+
num_train_epochs=epochs,
|
67 |
+
weight_decay=0.01,
|
68 |
+
logging_dir='./logs',
|
69 |
+
logging_steps=10,
|
70 |
+
save_strategy="epoch",
|
71 |
+
load_best_model_at_end=True,
|
72 |
+
)
|
73 |
+
|
74 |
+
# Initialize trainer
|
75 |
+
trainer = Trainer(
|
76 |
+
model=model,
|
77 |
+
args=training_args,
|
78 |
+
train_dataset=train_dataset,
|
79 |
+
eval_dataset=test_dataset,
|
80 |
+
compute_metrics=compute_metrics,
|
81 |
+
)
|
82 |
+
|
83 |
+
# Train and evaluate
|
84 |
+
trainer.train()
|
85 |
+
eval_results = trainer.evaluate()
|
86 |
+
|
87 |
+
# Save the model if path provided
|
88 |
+
if save_path:
|
89 |
+
trainer.save_model(save_path)
|
90 |
+
tokenizer.save_pretrained(save_path)
|
91 |
+
output = f"Model saved to {save_path}\nEvaluation results: {eval_results}"
|
92 |
+
else:
|
93 |
+
output = f"Model trained but not saved.\nEvaluation results: {eval_results}"
|
94 |
+
|
95 |
+
# Clean up temp directory
|
96 |
+
if os.path.exists("./temp_model"):
|
97 |
+
shutil.rmtree("./temp_model")
|
98 |
+
if os.path.exists("./logs"):
|
99 |
+
shutil.rmtree("./logs")
|
100 |
+
|
101 |
+
return output
|
102 |
+
|
103 |
+
# Load a pre-trained model for inference
|
104 |
+
def load_model(model_path):
|
105 |
+
global model, tokenizer
|
106 |
+
if not os.path.exists(model_path):
|
107 |
+
return "Error: Model path does not exist."
|
108 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
109 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_path)
|
110 |
+
return "Model loaded successfully from " + model_path
|
111 |
+
|
112 |
+
# Predict sentiment for new input
|
113 |
+
def predict_sentiment(title, text):
|
114 |
+
global model, tokenizer
|
115 |
+
if model is None or tokenizer is None:
|
116 |
+
return "Error: Please train or load a model first."
|
117 |
+
|
118 |
+
input_text = title + " " + text
|
119 |
+
inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
120 |
+
with torch.no_grad():
|
121 |
+
outputs = model(**inputs)
|
122 |
+
pred_label = np.argmax(outputs.logits.numpy(), axis=1)[0]
|
123 |
+
return f"Predicted Sentiment: {sentiment_map[pred_label]}"
|
124 |
+
|
125 |
+
# Gradio interface
|
126 |
+
with gr.Blocks(title="Financial News Sentiment Analyzer") as demo:
|
127 |
+
gr.Markdown("# Financial News Sentiment Analyzer")
|
128 |
+
gr.Markdown("Train a sentiment model on financial news articles, save it, and predict sentiments.")
|
129 |
+
|
130 |
+
with gr.Tab("Train Model"):
|
131 |
+
gr.Markdown("### Train a New Sentiment Model")
|
132 |
+
learning_rate = gr.Slider(1e-5, 5e-5, value=2e-5, label="Learning Rate")
|
133 |
+
epochs = gr.Slider(1, 5, value=3, step=1, label="Number of Epochs")
|
134 |
+
batch_size = gr.Slider(4, 16, value=8, step=4, label="Batch Size")
|
135 |
+
save_path = gr.Textbox(label="Save Model Path (optional)", placeholder="e.g., ./my_sentiment_model")
|
136 |
+
train_button = gr.Button("Train Model")
|
137 |
+
output = gr.Textbox(label="Training Output")
|
138 |
+
train_button.click(
|
139 |
+
fn=train_model,
|
140 |
+
inputs=[learning_rate, epochs, batch_size, save_path],
|
141 |
+
outputs=output
|
142 |
+
)
|
143 |
+
|
144 |
+
with gr.Tab("Load Model"):
|
145 |
+
gr.Markdown("### Load an Existing Model")
|
146 |
+
model_path = gr.Textbox(label="Model Path", placeholder="e.g., ./my_sentiment_model")
|
147 |
+
load_button = gr.Button("Load Model")
|
148 |
+
load_output = gr.Textbox(label="Load Status")
|
149 |
+
load_button.click(
|
150 |
+
fn=load_model,
|
151 |
+
inputs=model_path,
|
152 |
+
outputs=load_output
|
153 |
+
)
|
154 |
+
|
155 |
+
with gr.Tab("Predict Sentiment"):
|
156 |
+
gr.Markdown("### Predict Sentiment for New Input")
|
157 |
+
title_input = gr.Textbox(label="Article Title")
|
158 |
+
text_input = gr.Textbox(label="Article Text", lines=5)
|
159 |
+
predict_button = gr.Button("Predict")
|
160 |
+
pred_output = gr.Textbox(label="Prediction")
|
161 |
+
predict_button.click(
|
162 |
+
fn=predict_sentiment,
|
163 |
+
inputs=[title_input, text_input],
|
164 |
+
outputs=pred_output
|
165 |
+
)
|
166 |
+
|
167 |
+
# Launch the app
|
168 |
+
demo.launch()
|