Spaces:
Sleeping
Sleeping
File size: 1,846 Bytes
3cac10f e3bfc24 b9ca81a ea55fae f76e9f3 00f4121 f76e9f3 e3bfc24 f76e9f3 5e4dbaa f4889a6 711e623 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
import os
import subprocess
subprocess.run(["pip", "install","gradio==2.8.0b10"])
import gradio as gr
HF_TOKEN = os.getenv('HF_TOKEN')
hf_writer = gr.HuggingFaceDatasetSaver(HF_TOKEN, "Rick-bot-flags")
title = "Have Fun With RickBot"
description = """
<p>
<center>
The bot is trained on Rick and Morty dialogues Kaggle Dataset using DialoGPT.
<img src="https://gradio.app/assets/img/rick.gif">
</center>
</p>
"""
article = "<p style='text-align: center'><a href='https://medium.com/geekculture/discord-bot-using-dailogpt-and-huggingface-api-c71983422701' target='_blank'>Complete Tutorial</a></p><p style='text-align: center'><a href='https://dagshub.com/kingabzpro/DailoGPT-RickBot' target='_blank'>Project is Available at DAGsHub</a></p></center></p>"
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
tokenizer = AutoTokenizer.from_pretrained("kingabzpro/DialoGPT-small-Rick-Bot")
model = AutoModelForCausalLM.from_pretrained("kingabzpro/DialoGPT-small-Rick-Bot")
def predict(input, history=[]):
# tokenize the new input sentence
new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt')
# append the new user input tokens to the chat history
bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
# generate a response
history = model.generate(bot_input_ids, max_length=80, pad_token_id=tokenizer.eos_token_id).tolist()
# convert the tokens to text, and then split the responses into lines
response = tokenizer.decode(history[0]).replace("<|endoftext|>", "\n")
return response, history
gr.Interface(predict,"textbox", "chatbot").launch(enable_queue=True) # customizes the input component
#theme ="grass",
#title = title,
#flagging_callback=hf_writer,
#description = description,
#article = article |