File size: 1,846 Bytes
3cac10f
e3bfc24
b9ca81a
 
 
 
 
ea55fae
 
 
 
 
 
 
 
 
 
 
 
 
 
f76e9f3
 
 
00f4121
 
f76e9f3
 
 
 
 
 
 
 
 
e3bfc24
f76e9f3
 
 
 
 
 
5e4dbaa
f4889a6
711e623
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import os
import subprocess
subprocess.run(["pip", "install","gradio==2.8.0b10"])


import gradio as gr

HF_TOKEN = os.getenv('HF_TOKEN')
hf_writer = gr.HuggingFaceDatasetSaver(HF_TOKEN, "Rick-bot-flags")

title = "Have Fun With RickBot"
description = """
<p>
<center>
The bot is trained on Rick and Morty dialogues Kaggle Dataset using DialoGPT.
<img src="https://gradio.app/assets/img/rick.gif">
</center>
</p>
"""
article = "<p style='text-align: center'><a href='https://medium.com/geekculture/discord-bot-using-dailogpt-and-huggingface-api-c71983422701' target='_blank'>Complete Tutorial</a></p><p style='text-align: center'><a href='https://dagshub.com/kingabzpro/DailoGPT-RickBot' target='_blank'>Project is Available at DAGsHub</a></p></center></p>"

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

tokenizer = AutoTokenizer.from_pretrained("kingabzpro/DialoGPT-small-Rick-Bot")
model = AutoModelForCausalLM.from_pretrained("kingabzpro/DialoGPT-small-Rick-Bot")

def predict(input, history=[]):
    # tokenize the new input sentence
    new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt')

    # append the new user input tokens to the chat history
    bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)

    # generate a response 
    history = model.generate(bot_input_ids, max_length=80, pad_token_id=tokenizer.eos_token_id).tolist()

    # convert the tokens to text, and then split the responses into lines
    response = tokenizer.decode(history[0]).replace("<|endoftext|>", "\n")
    
    return response, history

gr.Interface(predict,"textbox", "chatbot").launch(enable_queue=True)  # customizes the input component

 #theme ="grass", 
 #title = title, 
 #flagging_callback=hf_writer,
 #description = description, 
 #article = article