Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,57 @@
|
|
1 |
-
|
|
|
2 |
import PIL.Image as Image
|
|
|
|
|
3 |
|
4 |
-
from ultralytics import
|
|
|
5 |
|
6 |
-
model
|
|
|
|
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
def predict_image(img, conf_threshold, iou_threshold):
|
10 |
-
"""Predicts objects in an image using a YOLO11 model with adjustable confidence and IOU thresholds."""
|
11 |
results = model.predict(
|
12 |
source=img,
|
13 |
conf=conf_threshold,
|
@@ -24,17 +68,18 @@ def predict_image(img, conf_threshold, iou_threshold):
|
|
24 |
return im
|
25 |
|
26 |
|
27 |
-
iface =
|
28 |
fn=predict_image,
|
29 |
inputs=[
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
33 |
],
|
34 |
-
outputs=
|
35 |
-
title="
|
36 |
-
description="
|
37 |
)
|
38 |
|
39 |
if __name__ == "__main__":
|
40 |
-
iface.launch()
|
|
|
1 |
+
# Code inspired from ultralyrics example with gradio
|
2 |
+
import gradio as gradio
|
3 |
import PIL.Image as Image
|
4 |
+
import os
|
5 |
+
import shutil
|
6 |
|
7 |
+
from ultralytics import YOLO
|
8 |
+
from huggingface_hub import hf_hub_download
|
9 |
|
10 |
+
# Directory where downloaded model will be stored
|
11 |
+
MODEL_DIR = "cached_models"
|
12 |
+
os.makedirs(MODEL_DIR, exist_ok=True)
|
13 |
|
14 |
+
# List of models available in the gradio ui
|
15 |
+
AVAILABLE_MODELS = {
|
16 |
+
"YOLOv8m Speech Bubble (kitsumed)": {
|
17 |
+
"repo_id": "kitsumed/yolov8m_seg-speech-bubble",
|
18 |
+
# Filename, include sub-directory if model not at root (models/v1/model.pt)
|
19 |
+
"filename": "model.pt"
|
20 |
+
},
|
21 |
+
# Add more models here
|
22 |
+
}
|
23 |
+
|
24 |
+
# Cache for currently loaded model
|
25 |
+
current_model = None
|
26 |
+
current_model_name = None
|
27 |
+
|
28 |
+
|
29 |
+
def load_model(model_name):
|
30 |
+
global current_model, current_model_name
|
31 |
+
|
32 |
+
if model_name == current_model_name:
|
33 |
+
return current_model
|
34 |
+
|
35 |
+
info = AVAILABLE_MODELS[model_name]
|
36 |
+
local_model_path = os.path.join(MODEL_DIR, f"{model_name}_{info['filename']}")
|
37 |
+
|
38 |
+
# If the model is yet existing in the cache, download and cache it
|
39 |
+
if not os.path.exists(local_model_path):
|
40 |
+
print(f"Downloading model '{model_name}'...")
|
41 |
+
downloaded_path = hf_hub_download(
|
42 |
+
repo_id=info["repo_id"],
|
43 |
+
filename=info["filename"]
|
44 |
+
)
|
45 |
+
shutil.move(downloaded_path, local_model_path)
|
46 |
+
|
47 |
+
current_model = YOLO(local_model_path)
|
48 |
+
current_model_name = model_name
|
49 |
+
return current_model
|
50 |
+
|
51 |
+
|
52 |
+
def predict_image(img, conf_threshold, iou_threshold, model_name):
|
53 |
+
model = load_model(model_name)
|
54 |
|
|
|
|
|
55 |
results = model.predict(
|
56 |
source=img,
|
57 |
conf=conf_threshold,
|
|
|
68 |
return im
|
69 |
|
70 |
|
71 |
+
iface = gradio.Interface(
|
72 |
fn=predict_image,
|
73 |
inputs=[
|
74 |
+
gradio.Image(type="pil", label="Upload Image"),
|
75 |
+
gradio.Slider(minimum=0, maximum=1, value=0.20, label="Confidence threshold"),
|
76 |
+
gradio.Slider(minimum=0, maximum=1, value=0.40, label="IoU threshold"),
|
77 |
+
gradio.Dropdown(choices=list(AVAILABLE_MODELS.keys()), label="Select Model", value=list(AVAILABLE_MODELS.keys())[0])
|
78 |
],
|
79 |
+
outputs=gradio.Image(type="pil", label="Result"),
|
80 |
+
title="Try out kitsumed YOLO models",
|
81 |
+
description="Select a model from kitsumed on Hugging Face and upload an image to perform predictions.",
|
82 |
)
|
83 |
|
84 |
if __name__ == "__main__":
|
85 |
+
iface.launch()
|