|
import torch |
|
import json |
|
import os |
|
|
|
version_config_paths = [ |
|
os.path.join("48000.json"), |
|
os.path.join("40000.json"), |
|
os.path.join("44100.json"), |
|
os.path.join("32000.json"), |
|
] |
|
|
|
|
|
def singleton(cls): |
|
instances = {} |
|
|
|
def get_instance(*args, **kwargs): |
|
if cls not in instances: |
|
instances[cls] = cls(*args, **kwargs) |
|
return instances[cls] |
|
|
|
return get_instance |
|
|
|
|
|
@singleton |
|
class Config: |
|
def __init__(self): |
|
self.device = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
self.gpu_name = ( |
|
torch.cuda.get_device_name(int(self.device.split(":")[-1])) |
|
if self.device.startswith("cuda") |
|
else None |
|
) |
|
self.json_config = self.load_config_json() |
|
self.gpu_mem = None |
|
self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config() |
|
|
|
def load_config_json(self): |
|
configs = {} |
|
for config_file in version_config_paths: |
|
config_path = os.path.join("rvc", "configs", config_file) |
|
with open(config_path, "r") as f: |
|
configs[config_file] = json.load(f) |
|
return configs |
|
|
|
def device_config(self): |
|
if self.device.startswith("cuda"): |
|
self.set_cuda_config() |
|
else: |
|
self.device = "cpu" |
|
|
|
|
|
x_pad, x_query, x_center, x_max = (1, 6, 38, 41) |
|
if self.gpu_mem is not None and self.gpu_mem <= 4: |
|
|
|
x_pad, x_query, x_center, x_max = (1, 5, 30, 32) |
|
|
|
return x_pad, x_query, x_center, x_max |
|
|
|
def set_cuda_config(self): |
|
i_device = int(self.device.split(":")[-1]) |
|
self.gpu_name = torch.cuda.get_device_name(i_device) |
|
self.gpu_mem = torch.cuda.get_device_properties(i_device).total_memory // ( |
|
1024**3 |
|
) |
|
|
|
|
|
def max_vram_gpu(gpu): |
|
if torch.cuda.is_available(): |
|
gpu_properties = torch.cuda.get_device_properties(gpu) |
|
total_memory_gb = round(gpu_properties.total_memory / 1024 / 1024 / 1024) |
|
return total_memory_gb |
|
else: |
|
return "8" |
|
|
|
|
|
def get_gpu_info(): |
|
ngpu = torch.cuda.device_count() |
|
gpu_infos = [] |
|
if torch.cuda.is_available() or ngpu != 0: |
|
for i in range(ngpu): |
|
gpu_name = torch.cuda.get_device_name(i) |
|
mem = int( |
|
torch.cuda.get_device_properties(i).total_memory / 1024 / 1024 / 1024 |
|
+ 0.4 |
|
) |
|
gpu_infos.append(f"{i}: {gpu_name} ({mem} GB)") |
|
if len(gpu_infos) > 0: |
|
gpu_info = "\n".join(gpu_infos) |
|
else: |
|
gpu_info = "Unfortunately, there is no compatible GPU available to support your training." |
|
return gpu_info |
|
|
|
|
|
def get_number_of_gpus(): |
|
if torch.cuda.is_available(): |
|
num_gpus = torch.cuda.device_count() |
|
return "-".join(map(str, range(num_gpus))) |
|
else: |
|
return "-" |
|
|