|
import torch |
|
from torch.utils.checkpoint import checkpoint |
|
from torch.nn.utils.parametrizations import spectral_norm, weight_norm |
|
|
|
from rvc.lib.algorithm.commons import get_padding |
|
from rvc.lib.algorithm.residuals import LRELU_SLOPE |
|
|
|
|
|
class MultiPeriodDiscriminator(torch.nn.Module): |
|
""" |
|
Multi-period discriminator. |
|
|
|
This class implements a multi-period discriminator, which is used to |
|
discriminate between real and fake audio signals. The discriminator |
|
is composed of a series of convolutional layers that are applied to |
|
the input signal at different periods. |
|
|
|
Args: |
|
use_spectral_norm (bool): Whether to use spectral normalization. |
|
Defaults to False. |
|
""" |
|
|
|
def __init__(self, use_spectral_norm: bool = False, checkpointing: bool = False): |
|
super(MultiPeriodDiscriminator, self).__init__() |
|
periods = [2, 3, 5, 7, 11, 17, 23, 37] |
|
self.checkpointing = checkpointing |
|
self.discriminators = torch.nn.ModuleList( |
|
[ |
|
DiscriminatorS( |
|
use_spectral_norm=use_spectral_norm, checkpointing=checkpointing |
|
) |
|
] |
|
+ [ |
|
DiscriminatorP( |
|
p, use_spectral_norm=use_spectral_norm, checkpointing=checkpointing |
|
) |
|
for p in periods |
|
] |
|
) |
|
|
|
def forward(self, y, y_hat): |
|
y_d_rs, y_d_gs, fmap_rs, fmap_gs = [], [], [], [] |
|
for d in self.discriminators: |
|
if self.training and self.checkpointing: |
|
|
|
def forward_discriminator(d, y, y_hat): |
|
y_d_r, fmap_r = d(y) |
|
y_d_g, fmap_g = d(y_hat) |
|
return y_d_r, fmap_r, y_d_g, fmap_g |
|
|
|
y_d_r, fmap_r, y_d_g, fmap_g = checkpoint( |
|
forward_discriminator, d, y, y_hat, use_reentrant=False |
|
) |
|
else: |
|
y_d_r, fmap_r = d(y) |
|
y_d_g, fmap_g = d(y_hat) |
|
y_d_rs.append(y_d_r) |
|
y_d_gs.append(y_d_g) |
|
fmap_rs.append(fmap_r) |
|
fmap_gs.append(fmap_g) |
|
|
|
return y_d_rs, y_d_gs, fmap_rs, fmap_gs |
|
|
|
|
|
class DiscriminatorS(torch.nn.Module): |
|
""" |
|
Discriminator for the short-term component. |
|
|
|
This class implements a discriminator for the short-term component |
|
of the audio signal. The discriminator is composed of a series of |
|
convolutional layers that are applied to the input signal. |
|
""" |
|
|
|
def __init__(self, use_spectral_norm: bool = False, checkpointing: bool = False): |
|
super(DiscriminatorS, self).__init__() |
|
self.checkpointing = checkpointing |
|
norm_f = spectral_norm if use_spectral_norm else weight_norm |
|
self.convs = torch.nn.ModuleList( |
|
[ |
|
norm_f(torch.nn.Conv1d(1, 16, 15, 1, padding=7)), |
|
norm_f(torch.nn.Conv1d(16, 64, 41, 4, groups=4, padding=20)), |
|
norm_f(torch.nn.Conv1d(64, 256, 41, 4, groups=16, padding=20)), |
|
norm_f(torch.nn.Conv1d(256, 1024, 41, 4, groups=64, padding=20)), |
|
norm_f(torch.nn.Conv1d(1024, 1024, 41, 4, groups=256, padding=20)), |
|
norm_f(torch.nn.Conv1d(1024, 1024, 5, 1, padding=2)), |
|
] |
|
) |
|
self.conv_post = norm_f(torch.nn.Conv1d(1024, 1, 3, 1, padding=1)) |
|
self.lrelu = torch.nn.LeakyReLU(LRELU_SLOPE, inplace=True) |
|
|
|
def forward(self, x): |
|
fmap = [] |
|
for conv in self.convs: |
|
if self.training and self.checkpointing: |
|
x = checkpoint(conv, x, use_reentrant=False) |
|
x = checkpoint(self.lrelu, x, use_reentrant=False) |
|
else: |
|
x = self.lrelu(conv(x)) |
|
fmap.append(x) |
|
x = self.conv_post(x) |
|
fmap.append(x) |
|
x = torch.flatten(x, 1, -1) |
|
return x, fmap |
|
|
|
|
|
class DiscriminatorP(torch.nn.Module): |
|
""" |
|
Discriminator for the long-term component. |
|
|
|
This class implements a discriminator for the long-term component |
|
of the audio signal. The discriminator is composed of a series of |
|
convolutional layers that are applied to the input signal at a given |
|
period. |
|
|
|
Args: |
|
period (int): Period of the discriminator. |
|
kernel_size (int): Kernel size of the convolutional layers. Defaults to 5. |
|
stride (int): Stride of the convolutional layers. Defaults to 3. |
|
use_spectral_norm (bool): Whether to use spectral normalization. Defaults to False. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
period: int, |
|
kernel_size: int = 5, |
|
stride: int = 3, |
|
use_spectral_norm: bool = False, |
|
checkpointing: bool = False, |
|
): |
|
super(DiscriminatorP, self).__init__() |
|
self.checkpointing = checkpointing |
|
self.period = period |
|
norm_f = spectral_norm if use_spectral_norm else weight_norm |
|
|
|
in_channels = [1, 32, 128, 512, 1024] |
|
out_channels = [32, 128, 512, 1024, 1024] |
|
|
|
self.convs = torch.nn.ModuleList( |
|
[ |
|
norm_f( |
|
torch.nn.Conv2d( |
|
in_ch, |
|
out_ch, |
|
(kernel_size, 1), |
|
(stride, 1), |
|
padding=(get_padding(kernel_size, 1), 0), |
|
) |
|
) |
|
for in_ch, out_ch in zip(in_channels, out_channels) |
|
] |
|
) |
|
|
|
self.conv_post = norm_f(torch.nn.Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) |
|
self.lrelu = torch.nn.LeakyReLU(LRELU_SLOPE, inplace=True) |
|
|
|
def forward(self, x): |
|
fmap = [] |
|
b, c, t = x.shape |
|
if t % self.period != 0: |
|
n_pad = self.period - (t % self.period) |
|
x = torch.nn.functional.pad(x, (0, n_pad), "reflect") |
|
x = x.view(b, c, -1, self.period) |
|
|
|
for conv in self.convs: |
|
if self.training and self.checkpointing: |
|
x = checkpoint(conv, x, use_reentrant=False) |
|
x = checkpoint(self.lrelu, x, use_reentrant=False) |
|
else: |
|
x = self.lrelu(conv(x)) |
|
fmap.append(x) |
|
|
|
x = self.conv_post(x) |
|
fmap.append(x) |
|
x = torch.flatten(x, 1, -1) |
|
return x, fmap |
|
|