|
import math |
|
from typing import Optional |
|
|
|
import torch |
|
from torch.nn.utils import remove_weight_norm |
|
from torch.nn.utils.parametrizations import weight_norm |
|
from torch.utils.checkpoint import checkpoint |
|
|
|
from rvc.lib.algorithm.commons import init_weights |
|
from rvc.lib.algorithm.generators.hifigan import SineGenerator |
|
from rvc.lib.algorithm.residuals import LRELU_SLOPE, ResBlock |
|
|
|
|
|
class SourceModuleHnNSF(torch.nn.Module): |
|
""" |
|
Source Module for generating harmonic and noise components for audio synthesis. |
|
|
|
This module generates a harmonic source signal using sine waves and adds |
|
optional noise. It's often used in neural vocoders as a source of excitation. |
|
|
|
Args: |
|
sample_rate (int): Sampling rate of the audio in Hz. |
|
harmonic_num (int, optional): Number of harmonic overtones to generate above the fundamental frequency (F0). Defaults to 0. |
|
sine_amp (float, optional): Amplitude of the sine wave components. Defaults to 0.1. |
|
add_noise_std (float, optional): Standard deviation of the additive white Gaussian noise. Defaults to 0.003. |
|
voiced_threshod (float, optional): Threshold for the fundamental frequency (F0) to determine if a frame is voiced. If F0 is below this threshold, it's considered unvoiced. Defaults to 0. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
sample_rate: int, |
|
harmonic_num: int = 0, |
|
sine_amp: float = 0.1, |
|
add_noise_std: float = 0.003, |
|
voiced_threshod: float = 0, |
|
): |
|
super(SourceModuleHnNSF, self).__init__() |
|
|
|
self.sine_amp = sine_amp |
|
self.noise_std = add_noise_std |
|
|
|
self.l_sin_gen = SineGenerator( |
|
sample_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod |
|
) |
|
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1) |
|
self.l_tanh = torch.nn.Tanh() |
|
|
|
def forward(self, x: torch.Tensor, upsample_factor: int = 1): |
|
sine_wavs, uv, _ = self.l_sin_gen(x, upsample_factor) |
|
sine_wavs = sine_wavs.to(dtype=self.l_linear.weight.dtype) |
|
sine_merge = self.l_tanh(self.l_linear(sine_wavs)) |
|
return sine_merge, None, None |
|
|
|
|
|
class HiFiGANNSFGenerator(torch.nn.Module): |
|
""" |
|
Generator module based on the Neural Source Filter (NSF) architecture. |
|
|
|
This generator synthesizes audio by first generating a source excitation signal |
|
(harmonic and noise) and then filtering it through a series of upsampling and |
|
residual blocks. Global conditioning can be applied to influence the generation. |
|
|
|
Args: |
|
initial_channel (int): Number of input channels to the initial convolutional layer. |
|
resblock_kernel_sizes (list): List of kernel sizes for the residual blocks. |
|
resblock_dilation_sizes (list): List of lists of dilation rates for the residual blocks, corresponding to each kernel size. |
|
upsample_rates (list): List of upsampling factors for each upsampling layer. |
|
upsample_initial_channel (int): Number of output channels from the initial convolutional layer, which is also the input to the first upsampling layer. |
|
upsample_kernel_sizes (list): List of kernel sizes for the transposed convolutional layers used for upsampling. |
|
gin_channels (int): Number of input channels for the global conditioning. If 0, no global conditioning is used. |
|
sr (int): Sampling rate of the audio. |
|
checkpointing (bool, optional): Whether to use gradient checkpointing to save memory during training. Defaults to False. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
initial_channel: int, |
|
resblock_kernel_sizes: list, |
|
resblock_dilation_sizes: list, |
|
upsample_rates: list, |
|
upsample_initial_channel: int, |
|
upsample_kernel_sizes: list, |
|
gin_channels: int, |
|
sr: int, |
|
checkpointing: bool = False, |
|
): |
|
super(HiFiGANNSFGenerator, self).__init__() |
|
|
|
self.num_kernels = len(resblock_kernel_sizes) |
|
self.num_upsamples = len(upsample_rates) |
|
self.checkpointing = checkpointing |
|
self.f0_upsamp = torch.nn.Upsample(scale_factor=math.prod(upsample_rates)) |
|
self.m_source = SourceModuleHnNSF(sample_rate=sr, harmonic_num=0) |
|
|
|
self.conv_pre = torch.nn.Conv1d( |
|
initial_channel, upsample_initial_channel, 7, 1, padding=3 |
|
) |
|
|
|
self.ups = torch.nn.ModuleList() |
|
self.noise_convs = torch.nn.ModuleList() |
|
|
|
channels = [ |
|
upsample_initial_channel // (2 ** (i + 1)) |
|
for i in range(len(upsample_rates)) |
|
] |
|
stride_f0s = [ |
|
math.prod(upsample_rates[i + 1 :]) if i + 1 < len(upsample_rates) else 1 |
|
for i in range(len(upsample_rates)) |
|
] |
|
|
|
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): |
|
|
|
if u % 2 == 0: |
|
|
|
padding = (k - u) // 2 |
|
else: |
|
padding = u // 2 + u % 2 |
|
|
|
self.ups.append( |
|
weight_norm( |
|
torch.nn.ConvTranspose1d( |
|
upsample_initial_channel // (2**i), |
|
channels[i], |
|
k, |
|
u, |
|
padding=padding, |
|
output_padding=u % 2, |
|
) |
|
) |
|
) |
|
""" handling odd upsampling rates |
|
# s k p |
|
# 40 80 20 |
|
# 32 64 16 |
|
# 4 8 2 |
|
# 2 3 1 |
|
# 63 125 31 |
|
# 9 17 4 |
|
# 3 5 1 |
|
# 1 1 0 |
|
""" |
|
stride = stride_f0s[i] |
|
kernel = 1 if stride == 1 else stride * 2 - stride % 2 |
|
padding = 0 if stride == 1 else (kernel - stride) // 2 |
|
|
|
self.noise_convs.append( |
|
torch.nn.Conv1d( |
|
1, |
|
channels[i], |
|
kernel_size=kernel, |
|
stride=stride, |
|
padding=padding, |
|
) |
|
) |
|
|
|
self.resblocks = torch.nn.ModuleList( |
|
[ |
|
ResBlock(channels[i], k, d) |
|
for i in range(len(self.ups)) |
|
for k, d in zip(resblock_kernel_sizes, resblock_dilation_sizes) |
|
] |
|
) |
|
|
|
self.conv_post = torch.nn.Conv1d(channels[-1], 1, 7, 1, padding=3, bias=False) |
|
self.ups.apply(init_weights) |
|
|
|
if gin_channels != 0: |
|
self.cond = torch.nn.Conv1d(gin_channels, upsample_initial_channel, 1) |
|
|
|
self.upp = math.prod(upsample_rates) |
|
self.lrelu_slope = LRELU_SLOPE |
|
|
|
def forward( |
|
self, x: torch.Tensor, f0: torch.Tensor, g: Optional[torch.Tensor] = None |
|
): |
|
har_source, _, _ = self.m_source(f0, self.upp) |
|
har_source = har_source.transpose(1, 2) |
|
|
|
x = self.conv_pre(x) |
|
|
|
if g is not None: |
|
|
|
x += self.cond(g) |
|
|
|
for i, (ups, noise_convs) in enumerate(zip(self.ups, self.noise_convs)): |
|
|
|
x = torch.nn.functional.leaky_relu_(x, self.lrelu_slope) |
|
|
|
|
|
if self.training and self.checkpointing: |
|
x = checkpoint(ups, x, use_reentrant=False) |
|
else: |
|
x = ups(x) |
|
|
|
|
|
x += noise_convs(har_source) |
|
|
|
|
|
def resblock_forward(x, blocks): |
|
return sum(block(x) for block in blocks) / len(blocks) |
|
|
|
blocks = self.resblocks[i * self.num_kernels : (i + 1) * self.num_kernels] |
|
|
|
|
|
if self.training and self.checkpointing: |
|
x = checkpoint(resblock_forward, x, blocks, use_reentrant=False) |
|
else: |
|
x = resblock_forward(x, blocks) |
|
|
|
x = torch.nn.functional.leaky_relu_(x) |
|
|
|
x = torch.tanh_(self.conv_post(x)) |
|
|
|
return x |
|
|
|
def remove_weight_norm(self): |
|
for l in self.ups: |
|
remove_weight_norm(l) |
|
for l in self.resblocks: |
|
l.remove_weight_norm() |
|
|
|
def __prepare_scriptable__(self): |
|
for l in self.ups: |
|
for hook in l._forward_pre_hooks.values(): |
|
if ( |
|
hook.__module__ == "torch.nn.utils.parametrizations.weight_norm" |
|
and hook.__class__.__name__ == "WeightNorm" |
|
): |
|
remove_weight_norm(l) |
|
for l in self.resblocks: |
|
for hook in l._forward_pre_hooks.values(): |
|
if ( |
|
hook.__module__ == "torch.nn.utils.parametrizations.weight_norm" |
|
and hook.__class__.__name__ == "WeightNorm" |
|
): |
|
remove_weight_norm(l) |
|
return self |
|
|