|
import os |
|
import sys |
|
import glob |
|
import time |
|
import tqdm |
|
import torch |
|
import torchcrepe |
|
import numpy as np |
|
import concurrent.futures |
|
import multiprocessing as mp |
|
import json |
|
|
|
now_dir = os.getcwd() |
|
sys.path.append(os.path.join(now_dir)) |
|
|
|
|
|
import rvc.lib.zluda |
|
|
|
from rvc.lib.utils import load_audio, load_embedding |
|
from rvc.train.extract.preparing_files import generate_config, generate_filelist |
|
from rvc.lib.predictors.RMVPE import RMVPE0Predictor |
|
from rvc.configs.config import Config |
|
|
|
|
|
config = Config() |
|
mp.set_start_method("spawn", force=True) |
|
|
|
|
|
class FeatureInput: |
|
def __init__(self, sample_rate=16000, hop_size=160, device="cpu"): |
|
self.fs = sample_rate |
|
self.hop = hop_size |
|
self.f0_bin = 256 |
|
self.f0_max = 1100.0 |
|
self.f0_min = 50.0 |
|
self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700) |
|
self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700) |
|
self.device = device |
|
self.model_rmvpe = None |
|
|
|
def compute_f0(self, audio_array, method, hop_length): |
|
if method == "crepe": |
|
return self._get_crepe(audio_array, hop_length, type="full") |
|
elif method == "crepe-tiny": |
|
return self._get_crepe(audio_array, hop_length, type="tiny") |
|
elif method == "rmvpe": |
|
return self.model_rmvpe.infer_from_audio(audio_array, thred=0.03) |
|
|
|
def _get_crepe(self, x, hop_length, type): |
|
audio = torch.from_numpy(x.astype(np.float32)).to(self.device) |
|
audio /= torch.quantile(torch.abs(audio), 0.999) |
|
audio = audio.unsqueeze(0) |
|
pitch = torchcrepe.predict( |
|
audio, |
|
self.fs, |
|
hop_length, |
|
self.f0_min, |
|
self.f0_max, |
|
type, |
|
batch_size=hop_length * 2, |
|
device=audio.device, |
|
pad=True, |
|
) |
|
source = pitch.squeeze(0).cpu().float().numpy() |
|
source[source < 0.001] = np.nan |
|
return np.nan_to_num( |
|
np.interp( |
|
np.arange(0, len(source) * (x.size // self.hop), len(source)) |
|
/ (x.size // self.hop), |
|
np.arange(0, len(source)), |
|
source, |
|
) |
|
) |
|
|
|
def coarse_f0(self, f0): |
|
f0_mel = 1127.0 * np.log(1.0 + f0 / 700.0) |
|
f0_mel = np.clip( |
|
(f0_mel - self.f0_mel_min) |
|
* (self.f0_bin - 2) |
|
/ (self.f0_mel_max - self.f0_mel_min) |
|
+ 1, |
|
1, |
|
self.f0_bin - 1, |
|
) |
|
return np.rint(f0_mel).astype(int) |
|
|
|
def process_file(self, file_info, f0_method, hop_length): |
|
inp_path, opt_path_coarse, opt_path_full, _ = file_info |
|
if os.path.exists(opt_path_coarse) and os.path.exists(opt_path_full): |
|
return |
|
|
|
try: |
|
np_arr = load_audio(inp_path, self.fs) |
|
feature_pit = self.compute_f0(np_arr, f0_method, hop_length) |
|
np.save(opt_path_full, feature_pit, allow_pickle=False) |
|
coarse_pit = self.coarse_f0(feature_pit) |
|
np.save(opt_path_coarse, coarse_pit, allow_pickle=False) |
|
except Exception as error: |
|
print( |
|
f"An error occurred extracting file {inp_path} on {self.device}: {error}" |
|
) |
|
|
|
def process_files(self, files, f0_method, hop_length, device, threads): |
|
self.device = device |
|
if f0_method == "rmvpe": |
|
self.model_rmvpe = RMVPE0Predictor( |
|
os.path.join("rvc", "models", "predictors", "rmvpe.pt"), |
|
device=device, |
|
) |
|
|
|
def worker(file_info): |
|
self.process_file(file_info, f0_method, hop_length) |
|
|
|
with tqdm.tqdm(total=len(files), leave=True) as pbar: |
|
with concurrent.futures.ThreadPoolExecutor(max_workers=threads) as executor: |
|
futures = [executor.submit(worker, f) for f in files] |
|
for _ in concurrent.futures.as_completed(futures): |
|
pbar.update(1) |
|
|
|
|
|
def run_pitch_extraction(files, devices, f0_method, hop_length, threads): |
|
devices_str = ", ".join(devices) |
|
print( |
|
f"Starting pitch extraction with {num_processes} cores on {devices_str} using {f0_method}..." |
|
) |
|
start_time = time.time() |
|
fe = FeatureInput() |
|
with concurrent.futures.ProcessPoolExecutor(max_workers=len(devices)) as executor: |
|
tasks = [ |
|
executor.submit( |
|
fe.process_files, |
|
files[i :: len(devices)], |
|
f0_method, |
|
hop_length, |
|
devices[i], |
|
threads // len(devices), |
|
) |
|
for i in range(len(devices)) |
|
] |
|
concurrent.futures.wait(tasks) |
|
|
|
print(f"Pitch extraction completed in {time.time() - start_time:.2f} seconds.") |
|
|
|
|
|
def process_file_embedding( |
|
files, embedder_model, embedder_model_custom, device_num, device, n_threads |
|
): |
|
model = load_embedding(embedder_model, embedder_model_custom).to(device).float() |
|
model.eval() |
|
n_threads = max(1, n_threads) |
|
|
|
def worker(file_info): |
|
wav_file_path, _, _, out_file_path = file_info |
|
if os.path.exists(out_file_path): |
|
return |
|
feats = torch.from_numpy(load_audio(wav_file_path, 16000)).to(device).float() |
|
feats = feats.view(1, -1) |
|
with torch.no_grad(): |
|
result = model(feats)["last_hidden_state"] |
|
feats_out = result.squeeze(0).float().cpu().numpy() |
|
if not np.isnan(feats_out).any(): |
|
np.save(out_file_path, feats_out, allow_pickle=False) |
|
else: |
|
print(f"{wav_file_path} produced NaN values; skipping.") |
|
|
|
with tqdm.tqdm(total=len(files), leave=True, position=device_num) as pbar: |
|
with concurrent.futures.ThreadPoolExecutor(max_workers=n_threads) as executor: |
|
futures = [executor.submit(worker, f) for f in files] |
|
for _ in concurrent.futures.as_completed(futures): |
|
pbar.update(1) |
|
|
|
|
|
def run_embedding_extraction( |
|
files, devices, embedder_model, embedder_model_custom, threads |
|
): |
|
devices_str = ", ".join(devices) |
|
print( |
|
f"Starting embedding extraction with {num_processes} cores on {devices_str}..." |
|
) |
|
start_time = time.time() |
|
with concurrent.futures.ProcessPoolExecutor(max_workers=len(devices)) as executor: |
|
tasks = [ |
|
executor.submit( |
|
process_file_embedding, |
|
files[i :: len(devices)], |
|
embedder_model, |
|
embedder_model_custom, |
|
i, |
|
devices[i], |
|
threads // len(devices), |
|
) |
|
for i in range(len(devices)) |
|
] |
|
concurrent.futures.wait(tasks) |
|
|
|
print(f"Embedding extraction completed in {time.time() - start_time:.2f} seconds.") |
|
|
|
|
|
if __name__ == "__main__": |
|
exp_dir = sys.argv[1] |
|
f0_method = sys.argv[2] |
|
hop_length = int(sys.argv[3]) |
|
num_processes = int(sys.argv[4]) |
|
gpus = sys.argv[5] |
|
sample_rate = sys.argv[6] |
|
embedder_model = sys.argv[7] |
|
embedder_model_custom = sys.argv[8] if len(sys.argv) > 8 else None |
|
include_mutes = int(sys.argv[9]) if len(sys.argv) > 9 else 2 |
|
|
|
wav_path = os.path.join(exp_dir, "sliced_audios_16k") |
|
os.makedirs(os.path.join(exp_dir, "f0"), exist_ok=True) |
|
os.makedirs(os.path.join(exp_dir, "f0_voiced"), exist_ok=True) |
|
os.makedirs(os.path.join(exp_dir, "extracted"), exist_ok=True) |
|
|
|
chosen_embedder_model = ( |
|
embedder_model_custom if embedder_model == "custom" else embedder_model |
|
) |
|
file_path = os.path.join(exp_dir, "model_info.json") |
|
if os.path.exists(file_path): |
|
with open(file_path, "r") as f: |
|
data = json.load(f) |
|
else: |
|
data = {} |
|
data["embedder_model"] = chosen_embedder_model |
|
with open(file_path, "w") as f: |
|
json.dump(data, f, indent=4) |
|
|
|
files = [] |
|
for file in glob.glob(os.path.join(wav_path, "*.wav")): |
|
file_name = os.path.basename(file) |
|
file_info = [ |
|
file, |
|
os.path.join(exp_dir, "f0", file_name + ".npy"), |
|
os.path.join(exp_dir, "f0_voiced", file_name + ".npy"), |
|
os.path.join(exp_dir, "extracted", file_name.replace("wav", "npy")), |
|
] |
|
files.append(file_info) |
|
|
|
devices = ["cpu"] if gpus == "-" else [f"cuda:{idx}" for idx in gpus.split("-")] |
|
|
|
run_pitch_extraction(files, devices, f0_method, hop_length, num_processes) |
|
|
|
run_embedding_extraction( |
|
files, devices, embedder_model, embedder_model_custom, num_processes |
|
) |
|
|
|
generate_config(sample_rate, exp_dir) |
|
generate_filelist(exp_dir, sample_rate, include_mutes) |
|
|