|
import os |
|
import sys |
|
import faiss |
|
import numpy as np |
|
from sklearn.cluster import MiniBatchKMeans |
|
from multiprocessing import cpu_count |
|
|
|
|
|
exp_dir = str(sys.argv[1]) |
|
index_algorithm = str(sys.argv[2]) |
|
|
|
try: |
|
feature_dir = os.path.join(exp_dir, f"extracted") |
|
model_name = os.path.basename(exp_dir) |
|
|
|
index_filename_added = f"{model_name}.index" |
|
index_filepath_added = os.path.join(exp_dir, index_filename_added) |
|
|
|
if os.path.exists(index_filepath_added): |
|
pass |
|
else: |
|
npys = [] |
|
listdir_res = sorted(os.listdir(feature_dir)) |
|
|
|
for name in listdir_res: |
|
file_path = os.path.join(feature_dir, name) |
|
phone = np.load(file_path) |
|
npys.append(phone) |
|
|
|
big_npy = np.concatenate(npys, axis=0) |
|
|
|
big_npy_idx = np.arange(big_npy.shape[0]) |
|
np.random.shuffle(big_npy_idx) |
|
big_npy = big_npy[big_npy_idx] |
|
|
|
if big_npy.shape[0] > 2e5 and ( |
|
index_algorithm == "Auto" or index_algorithm == "KMeans" |
|
): |
|
big_npy = ( |
|
MiniBatchKMeans( |
|
n_clusters=10000, |
|
verbose=True, |
|
batch_size=256 * cpu_count(), |
|
compute_labels=False, |
|
init="random", |
|
) |
|
.fit(big_npy) |
|
.cluster_centers_ |
|
) |
|
|
|
n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39) |
|
|
|
|
|
index_added = faiss.index_factory(768, f"IVF{n_ivf},Flat") |
|
index_ivf_added = faiss.extract_index_ivf(index_added) |
|
index_ivf_added.nprobe = 1 |
|
index_added.train(big_npy) |
|
|
|
batch_size_add = 8192 |
|
for i in range(0, big_npy.shape[0], batch_size_add): |
|
index_added.add(big_npy[i : i + batch_size_add]) |
|
|
|
faiss.write_index(index_added, index_filepath_added) |
|
print(f"Saved index file '{index_filepath_added}'") |
|
|
|
except Exception as error: |
|
print(f"An error occurred extracting the index: {error}") |
|
print( |
|
"If you are running this code in a virtual environment, make sure you have enough GPU available to generate the Index file." |
|
) |
|
|