Spaces:
Running
Running
File size: 8,569 Bytes
bf0e5e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
import argparse
import shutil
from pathlib import Path
from queue import Queue
from threading import Thread
from typing import Any, Optional
import soundfile as sf
import torch
from tqdm import tqdm
from config import get_path_config
from style_bert_vits2.logging import logger
from style_bert_vits2.utils.stdout_wrapper import SAFE_STDOUT
def is_audio_file(file: Path) -> bool:
supported_extensions = [".wav", ".flac", ".mp3", ".ogg", ".opus", ".m4a"]
return file.suffix.lower() in supported_extensions
def get_stamps(
vad_model: Any,
utils: Any,
audio_file: Path,
min_silence_dur_ms: int = 700,
min_sec: float = 2,
max_sec: float = 12,
):
"""
min_silence_dur_ms: int (ミリ秒):
このミリ秒数以上を無音だと判断する。
逆に、この秒数以下の無音区間では区切られない。
小さくすると、音声がぶつ切りに小さくなりすぎ、
大きくすると音声一つ一つが長くなりすぎる。
データセットによってたぶん要調整。
min_sec: float (秒):
この秒数より小さい発話は無視する。
max_sec: float (秒):
この秒数より大きい発話は無視する。
"""
(get_speech_timestamps, _, read_audio, *_) = utils
sampling_rate = 16000 # 16kHzか8kHzのみ対応
min_ms = int(min_sec * 1000)
wav = read_audio(str(audio_file), sampling_rate=sampling_rate)
speech_timestamps = get_speech_timestamps(
wav,
vad_model,
sampling_rate=sampling_rate,
min_silence_duration_ms=min_silence_dur_ms,
min_speech_duration_ms=min_ms,
max_speech_duration_s=max_sec,
)
return speech_timestamps
def split_wav(
vad_model: Any,
utils: Any,
audio_file: Path,
target_dir: Path,
min_sec: float = 2,
max_sec: float = 12,
min_silence_dur_ms: int = 700,
time_suffix: bool = False,
) -> tuple[float, int]:
margin: int = 200 # ミリ秒単位で、音声の前後に余裕を持たせる
speech_timestamps = get_stamps(
vad_model=vad_model,
utils=utils,
audio_file=audio_file,
min_silence_dur_ms=min_silence_dur_ms,
min_sec=min_sec,
max_sec=max_sec,
)
data, sr = sf.read(audio_file)
total_ms = len(data) / sr * 1000
file_name = audio_file.stem
target_dir.mkdir(parents=True, exist_ok=True)
total_time_ms: float = 0
count = 0
# タイムスタンプに従って分割し、ファイルに保存
for i, ts in enumerate(speech_timestamps):
start_ms = max(ts["start"] / 16 - margin, 0)
end_ms = min(ts["end"] / 16 + margin, total_ms)
start_sample = int(start_ms / 1000 * sr)
end_sample = int(end_ms / 1000 * sr)
segment = data[start_sample:end_sample]
if time_suffix:
file = f"{file_name}-{int(start_ms)}-{int(end_ms)}.wav"
else:
file = f"{file_name}-{i}.wav"
sf.write(str(target_dir / file), segment, sr)
total_time_ms += end_ms - start_ms
count += 1
return total_time_ms / 1000, count
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--min_sec", "-m", type=float, default=2, help="Minimum seconds of a slice"
)
parser.add_argument(
"--max_sec", "-M", type=float, default=12, help="Maximum seconds of a slice"
)
parser.add_argument(
"--input_dir",
"-i",
type=str,
default="inputs",
help="Directory of input wav files",
)
parser.add_argument(
"--model_name",
type=str,
required=True,
help="The result will be in Data/{model_name}/raw/ (if Data is dataset_root in configs/paths.yml)",
)
parser.add_argument(
"--min_silence_dur_ms",
"-s",
type=int,
default=700,
help="Silence above this duration (ms) is considered as a split point.",
)
parser.add_argument(
"--time_suffix",
"-t",
action="store_true",
help="Make the filename end with -start_ms-end_ms when saving wav.",
)
parser.add_argument(
"--num_processes",
type=int,
default=3,
help="Number of processes to use. Default 3 seems to be the best.",
)
args = parser.parse_args()
path_config = get_path_config()
dataset_root = path_config.dataset_root
model_name = str(args.model_name)
input_dir = Path(args.input_dir)
output_dir = dataset_root / model_name / "raw"
min_sec: float = args.min_sec
max_sec: float = args.max_sec
min_silence_dur_ms: int = args.min_silence_dur_ms
time_suffix: bool = args.time_suffix
num_processes: int = args.num_processes
audio_files = [file for file in input_dir.rglob("*") if is_audio_file(file)]
logger.info(f"Found {len(audio_files)} audio files.")
if output_dir.exists():
logger.warning(f"Output directory {output_dir} already exists, deleting...")
shutil.rmtree(output_dir)
# モデルをダウンロードしておく
_ = torch.hub.load(
repo_or_dir="litagin02/silero-vad",
model="silero_vad",
onnx=True,
trust_repo=True,
)
# Silero VADのモデルは、同じインスタンスで並列処理するとおかしくなるらしい
# ワーカーごとにモデルをロードするようにするため、Queueを使って処理する
def process_queue(
q: Queue[Optional[Path]],
result_queue: Queue[tuple[float, int]],
error_queue: Queue[tuple[Path, Exception]],
):
# logger.debug("Worker started.")
vad_model, utils = torch.hub.load(
repo_or_dir="litagin02/silero-vad",
model="silero_vad",
onnx=True,
trust_repo=True,
)
while True:
file = q.get()
if file is None: # 終了シグナルを確認
q.task_done()
break
try:
rel_path = file.relative_to(input_dir)
time_sec, count = split_wav(
vad_model=vad_model,
utils=utils,
audio_file=file,
target_dir=output_dir / rel_path.parent,
min_sec=min_sec,
max_sec=max_sec,
min_silence_dur_ms=min_silence_dur_ms,
time_suffix=time_suffix,
)
result_queue.put((time_sec, count))
except Exception as e:
logger.error(f"Error processing {file}: {e}")
error_queue.put((file, e))
result_queue.put((0, 0))
finally:
q.task_done()
q: Queue[Optional[Path]] = Queue()
result_queue: Queue[tuple[float, int]] = Queue()
error_queue: Queue[tuple[Path, Exception]] = Queue()
# ファイル数が少ない場合は、ワーカー数をファイル数に合わせる
num_processes = min(num_processes, len(audio_files))
threads = [
Thread(target=process_queue, args=(q, result_queue, error_queue))
for _ in range(num_processes)
]
for t in threads:
t.start()
pbar = tqdm(total=len(audio_files), file=SAFE_STDOUT)
for file in audio_files:
q.put(file)
# result_queueを監視し、要素が追加されるごとに結果を加算しプログレスバーを更新
total_sec = 0
total_count = 0
for _ in range(len(audio_files)):
time, count = result_queue.get()
total_sec += time
total_count += count
pbar.update(1)
# 全ての処理が終わるまで待つ
q.join()
# 終了シグナル None を送る
for _ in range(num_processes):
q.put(None)
for t in threads:
t.join()
pbar.close()
if not error_queue.empty():
error_str = "Error slicing some files:"
while not error_queue.empty():
file, e = error_queue.get()
error_str += f"\n{file}: {e}"
raise RuntimeError(error_str)
logger.info(
f"Slice done! Total time: {total_sec / 60:.2f} min, {total_count} files."
)
|