File size: 7,690 Bytes
dbaa71b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import logging
from typing import Any, Dict, List, Optional

from presidio_analyzer import AnalyzerEngine, EntityRecognizer
from presidio_anonymizer import AnonymizerEngine
from presidio_analyzer.nlp_engine import NlpEngineProvider
from presidio_anonymizer.entities.engine import OperatorConfig
from pydantic import BaseModel, Field, PrivateAttr

from obsei.analyzer.base_analyzer import (
    BaseAnalyzer,
    BaseAnalyzerConfig,
)
from obsei.payload import TextPayload

logger = logging.getLogger(__name__)


class PresidioModelConfig(BaseModel):
    lang_code: Optional[str] = Field("en")
    model_name: Optional[str] = Field("en_core_web_lg")


class PresidioEngineConfig(BaseModel):
    nlp_engine_name: Optional[str] = Field("spacy")
    models: Optional[List[PresidioModelConfig]] = None

    def __init__(self, **data: Any):
        super().__init__(**data)

        if not self.models or len(self.models) == 0:
            self.models = [PresidioModelConfig()]


class PresidioAnonymizerConfig(OperatorConfig, BaseModel): # type: ignore
    def __init__(self, anonymizer_name: str, params: Optional[Dict[str, Any]] = None):
        super().__init__(anonymizer_name=anonymizer_name, params=params)

    class Config:
        arbitrary_types_allowed = True


class PresidioPIIAnalyzerConfig(BaseAnalyzerConfig):
    TYPE: str = "PresidioPII"
    # To find more details refer https://microsoft.github.io/presidio/anonymizer/
    anonymizers_config: Optional[Dict[str, PresidioAnonymizerConfig]] = None
    # To see list of supported entities refer https://microsoft.github.io/presidio/supported_entities/
    # By default it will search for all the supported entities
    entities: Optional[List[str]] = None
    analyze_only: Optional[bool] = False
    replace_original_text: Optional[bool] = True
    # Whether the analysis decision process steps returned in the response
    return_decision_process: Optional[bool] = False


class PresidioPIIAnalyzer(BaseAnalyzer):
    _analyzer: AnalyzerEngine = PrivateAttr()
    _anonymizer: AnonymizerEngine = PrivateAttr()
    TYPE: str = "PresidioPII"
    engine_config: Optional[PresidioEngineConfig] = None
    # To see list of supported entities refer https://microsoft.github.io/presidio/supported_entities/
    # To add customer recognizers refer https://microsoft.github.io/presidio/analyzer/adding_recognizers/
    entity_recognizers: Optional[List[EntityRecognizer]] = None
    # To find more details refer https://microsoft.github.io/presidio/anonymizer/
    anonymizers_config: Optional[Dict[str, OperatorConfig]] = None

    def __init__(self, **data: Any):
        super().__init__(**data)

        if not self.engine_config:
            self.engine_config = PresidioEngineConfig()

        if not self.engine_config.models or len(self.engine_config.models) == 0:
            self.engine_config.models = [PresidioModelConfig()]

        # If spacy engine then load Spacy models and select languages
        languages = []
        for model_config in self.engine_config.models:
            languages.append(model_config.lang_code)

            # Check SpacyNlpEngine.engine_name
            if (
                self.engine_config.nlp_engine_name == "spacy"
                and model_config.model_name is not None
            ):
                try:
                    spacy_model = __import__(model_config.model_name)
                    spacy_model.load()
                    logger.info(
                        f"Spacy model {model_config.model_name} is already downloaded"
                    )
                except:
                    logger.warning(
                        f"Spacy model {model_config.model_name} is not downloaded"
                    )
                    logger.warning(
                        f"Downloading spacy model {model_config.model_name}, it might take some time"
                    )
                    from spacy.cli import download  # type: ignore

                    download(model_config.model_name)

        # Create NLP engine based on configuration
        provider = NlpEngineProvider(nlp_configuration=self.engine_config.dict())
        nlp_engine = provider.create_engine()

        # Pass the created NLP engine and supported_languages to the AnalyzerEngine
        self._analyzer = AnalyzerEngine(
            nlp_engine=nlp_engine, supported_languages=languages
        )

        # self._analyzer.registry.load_predefined_recognizers()
        if self.entity_recognizers:
            for entity_recognizer in self.entity_recognizers:
                self._analyzer.registry.add_recognizer(entity_recognizer)

        # Initialize the anonymizer with logger
        self._anonymizer = AnonymizerEngine()

    def analyze_input(  # type: ignore[override]
        self,
        source_response_list: List[TextPayload],
        analyzer_config: Optional[PresidioPIIAnalyzerConfig] = None,
        language: Optional[str] = "en",
        **kwargs: Any,
    ) -> List[TextPayload]:
        if analyzer_config is None:
            raise ValueError("analyzer_config can't be None")

        analyzer_output: List[TextPayload] = []

        for batch_responses in self.batchify(source_response_list, self.batch_size):
            for source_response in batch_responses:
                analyzer_result = self._analyzer.analyze(
                    text=source_response.processed_text,
                    entities=analyzer_config.entities,
                    return_decision_process=analyzer_config.return_decision_process,
                    language=language,
                )

                anonymized_result = None
                if not analyzer_config.analyze_only:
                    anonymizers_config = (
                        analyzer_config.anonymizers_config or self.anonymizers_config
                    )

                    if (
                        source_response.processed_text is not None
                        and len(source_response.processed_text) > 0
                    ):
                        anonymized_result = self._anonymizer.anonymize(
                            text=source_response.processed_text,
                            operators=anonymizers_config,
                            analyzer_results=analyzer_result,
                        )

                if (
                    analyzer_config.replace_original_text
                    and anonymized_result is not None
                ):
                    text = anonymized_result.text
                else:
                    text = source_response.processed_text

                segmented_data = {
                    "pii_data": {
                        "analyzer_result": [vars(result) for result in analyzer_result],
                        "anonymized_result": None
                        if not anonymized_result
                        else [vars(item) for item in anonymized_result.items],
                        "anonymized_text": None
                        if not anonymized_result
                        else anonymized_result.text,
                    }
                }
                if source_response.segmented_data:
                    segmented_data = {
                        **segmented_data,
                        **source_response.segmented_data,
                    }

                analyzer_output.append(
                    TextPayload(
                        processed_text=text,
                        meta=source_response.meta,
                        segmented_data=segmented_data,
                        source_name=source_response.source_name,
                    )
                )

        return analyzer_output