File size: 20,477 Bytes
c9518d2
 
 
 
 
 
 
5fad2f1
c9518d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a61a18
c9518d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a61a18
c9518d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
676fa45
c9518d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fad2f1
c9518d2
a9acf87
c9518d2
 
 
 
 
 
 
3ed1a89
c9518d2
 
a9d1818
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9518d2
 
 
 
5fad2f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a61a18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ed1a89
c9518d2
6a61a18
3ed1a89
c9518d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cade2b4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
import gradio as gr
import pandas as pd
from pathlib import Path
import plotly.express as px
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
import textwrap

from src.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    BENCHMARK_COLS,
    COLS,
    EVAL_COLS,
    EVAL_TYPES,
    AutoEvalColumn,
    ModelType,
    fields,
    WeightType,
    Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df, get_rag_leaderboard_df
from src.submission.submit import add_new_eval
import base64


def restart_space():
    API.restart_space(repo_id=REPO_ID)



def make_rate_chart(df: pd.DataFrame):
    """Return a Plotly bar chart of hallucination rates."""
    # long-form dataframe for grouped bars
    df_long = df.melt(
        id_vars="Models",
        value_vars=["RAG Hallucination Rate (%)", "Non-RAG Hallucination Rate (%)"],
        var_name="Benchmark",
        value_name="Rate",
    )
    fig = px.bar(
        df_long,
        x="Models",
        y="Rate",
        color="Benchmark",
        barmode="group",
        title="Hallucination Rates by Model",
        height=400,
    )
    fig.update_layout(xaxis_title="", yaxis_title="%")
    return fig

def make_leaderboard_plot(df: pd.DataFrame, col: str, title: str, bar_color: str):
    """
    Return a horizontal bar chart sorted ascending by `col`.
    Lowest value (best) at the top.
    """
    df_sorted = df.sort_values(col, ascending=False)           # best → worst
    fig = px.bar(
        df_sorted,
        x=col,
        y="Models",
        orientation="h",
        title=title,
        text_auto=".2f",
        height=400,
        color_discrete_sequence=[bar_color],
    )
    fig.update_traces(textposition="outside", cliponaxis=False)

    fig.update_layout(
        xaxis_title="Hallucination Rate (%)",
        yaxis_title="",
        yaxis=dict(dtick=1),   # ensure every model shown
        margin=dict(l=140, r=60, t=60, b=40)
    )
    fig.update_traces(textposition="outside")
    return fig


def color_scale(s, cmap):
    """
    Return background-colour styles for a numeric Series (lower = greener,
    higher = redder). Works with any palette length.
    """
    colours = px.colors.sequential.__dict__[cmap]
    n = len(colours) - 1                     # max valid index

    rng = s.max() - s.min()
    norm = (s - s.min()) / (rng if rng else 1)

    return [f"background-color:{colours[int(v * n)]}" for v in 1 - norm]


### Space initialisation
try:
    print(EVAL_REQUESTS_PATH)
    snapshot_download(
        repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    # restart_space()
    print(f"[WARN] Skipping RESULTS sync: {Exception}")
try:
    print(EVAL_RESULTS_PATH)
    snapshot_download(
        repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    # restart_space()
    print(f"[WARN] Skipping RESULTS sync: {Exception}")


# LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
LEADERBOARD_DF = get_leaderboard_df("leaderboard/data/leaderboard.csv")
RAG_DF = get_rag_leaderboard_df("leaderboard/data/rag_methods_compare.csv")

# (
#     finished_eval_queue_df,
#     running_eval_queue_df,
#     pending_eval_queue_df,
# ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)

def init_leaderboard(df: pd.DataFrame):
    if df is None or df.empty:
        raise ValueError("Leaderboard DataFrame is empty or None.")
    
    return Leaderboard(
        value=df,
        datatype=["markdown", "markdown", "number", "number", "number"],  
        select_columns=SelectColumns(
            default_selection=[
                "Rank", "Models",
                "Average Hallucination Rate (%)",
                "RAG Hallucination Rate (%)",
                "Non-RAG Hallucination Rate (%)"
            ],
            cant_deselect=["Models", "Rank"],
            label="Select Columns to Display:",
        ),
        search_columns=["Models"],
        # column_widths=["3%"],   
        bool_checkboxgroup_label=None,
        interactive=False,
        height=800 
    )

image_path = "static/kluster-color.png"
with open(image_path, "rb") as img_file:
    b64_string = base64.b64encode(img_file.read()).decode("utf-8")


# print("CUSTOM CSS\n", custom_css[-1000:], "\n---------")
demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(f"""
        <div style="text-align: center; margin-top: 2em; margin-bottom: 1em;">
            <img src="data:image/png;base64,{b64_string}" alt="kluster.ai logo"
                style="height: 80px; display: block; margin-left: auto; margin-right: auto;" />
            
            <div style="font-size: 2.5em; font-weight: bold; margin-top: 0.4em; color: var(--text-color);">
                LLM Hallucination Detection Leaderboard
            </div>
            
            <div style="font-size: 1.5em; margin-top: 0.5em;">
                Evaluating factual accuracy and faithfulness of LLMs in both RAG and non-RAG settings with
                <a href="https://platform.kluster.ai/verify" target="_blank">
                    Verify
                </a> by
                <a href="https://kluster.ai/" target="_blank">
                    kluster.ai
                </a> which provides an API for detecting hallucinations with any model. 
            </div>
        </div>
        """)


    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("🏅 Hallucination Leaderboard", elem_id="llm-benchmark-tab-table", id=0):
            gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
            # ----------  Chart  ----------
            with gr.Row():
                with gr.Column():
                    gr.Plot(
                        make_leaderboard_plot(
                            LEADERBOARD_DF,
                            "RAG Hallucination Rate (%)",
                            "RAG Hallucination Rate (lower is better)",
                            bar_color="#4CAF50",
                        ),
                        show_label=False,
                    )
                    gr.Markdown("*HaluEval-QA benchmark (RAG): The model receives a question plus supporting context. We report the % of answers that introduce facts not found in that context — lower is better. See the **Details** tab for more information.*", elem_classes="plot-caption")
                with gr.Column():
                    gr.Plot(
                        make_leaderboard_plot(
                            LEADERBOARD_DF,
                            "Non-RAG Hallucination Rate (%)",
                            "Non-RAG Hallucination Rate (lower is better)",
                            bar_color="#FF7043",
                        ),
                        show_label=False,
                    )
                    gr.Markdown("*UltraChat benchmark (~11 k prompts, non-RAG): Evaluates open-domain answers when only the question is given. Score is the % of hallucinated responses — lower is better. See the **Details** tab for more information.*", elem_classes="plot-caption")

            # ----------  Leaderboard  ----------
            leaderboard = init_leaderboard(LEADERBOARD_DF)

            # ----------  Get Started with Verify  ----------
            verify_markdown = textwrap.dedent(
                """
                ## Get started with Verify by kluster.ai

                Verify is an intelligent agent that validates LLM outputs in real-time.

                - **Blog post:** [Introducing Verify by kluster.ai](https://www.kluster.ai/blog/introducing-verify-by-kluster-ai-the-missing-trust-layer-in-your-ai-stack)  
                - **Documentation:** [Verify overview & API reference](https://docs.kluster.ai/get-started/verify/overview/)  
                - **Try it out in your browser:** [kluster.ai platform](https://platform.kluster.ai/verify)

                ### Quick API examples
                """
            )

            gr.Markdown(verify_markdown, elem_classes="markdown-text")

            code_example_reliability = textwrap.dedent(
                r"""curl -X POST https://api.kluster.ai/v1/verify/reliability \
  -H "Authorization: Bearer YOUR_API_KEY" \
  -H "Content-Type: application/json" \
  -d '{
    "prompt": "Tell me about the new iPhone 20 features",
    "output": "The iPhone 20 includes a revolutionary holographic display, 200MP camera with AI scene detection, and can project 3D holograms up to 6 feet away for video calls.",
    "context": null
  }'"""
            )

            gr.Code(code_example_reliability, language="shell")

            code_example_chat = textwrap.dedent(
                r"""curl -X POST https://api.kluster.ai/v1/chat/completions \
  -H "Authorization: Bearer YOUR_API_KEY" \
  -H "Content-Type: application/json" \
  -d '{
    "model": "klusterai/verify-reliability",
    "messages": [
      { "role": "user", "content": "What can you tell me about Milos Burger Joint?" },
      { "role": "assistant", "content": "Milos Burger Joint has been serving authentic Burgers cuisine since 1999 and just won 2 Michelin stars last week, making it the highest-rated burger restaurant in the city." }
    ]
  }'"""
            )

            gr.Code(code_example_chat, language="shell")

        
        with gr.TabItem("🧪 RAG Techniques and Hallucinations", elem_id="llm-benchmark-tab-table", id=2):
            rag_techniques_markdown = textwrap.dedent(
                """
                ## Comparison of Different RAG Techniques and Hallucinations

                Many LLMs can generate fluent answers but still hallucinate facts—especially in RAG settings. This experiment aims to understand how different prompting strategies impact hallucination rates across models. It helps answer: Which prompt format is most reliable? Which models are more sensitive to prompt structure? The goal is to inform better design of RAG pipelines for reducing factual errors in downstream tasks.

                We presents hallucination rates for various LLMs under three different RAG prompting strategies. Each method delivers the same document context and question, but differs in how the information is structured during the prompt.

                ### RAG Techniques Evaluated

                **1. Two-Turn Explicit RAG**  
                The document and question are sent in separate user messages:
                ```
                [System]: You are an assistant for question-answering tasks. 
                        Given the QUESTION and DOCUMENT you must answer the QUESTION using the information in the DOCUMENT. 
                        You must not offer new information beyond the context provided in the DOCUMENT. Do not add any external knowledge. 
                        The ANSWER also must not contradict information provided in the DOCUMENT. 
                        If the DOCUMENT does not contain the facts to answer the QUESTION or you do not know the answer, you truthfully say that you do not know. 
                        You have access to information provided by the user as DOCUMENT to answer the QUESTION, and nothing else. 
                        Use three sentences maximum and keep the answer concise.

                [User]: DOCUMENT: <context>  
                [User]: QUESTION: <prompt>
                ```
                This method creates a multi-turn format, which allows the model to treat the context and question independently.  
                *Note: This method does not work on Gemma 3 27B due to its restriction on consecutive user messages without an intervening assistant response.*

                **2. System-Prompt Injection RAG**  
                The document is embedded inside the system prompt, and the user sends only the question:
                ```
                [System]: You are an assistant for question-answering tasks. 
                        Given the QUESTION and DOCUMENT you must answer the QUESTION using the information in the DOCUMENT. 
                        You must not offer new information beyond the context provided in the DOCUMENT. Do not add any external knowledge. 
                        The ANSWER also must not contradict information provided in the DOCUMENT. 
                        If the DOCUMENT does not contain the facts to answer the QUESTION or you do not know the answer, you truthfully say that you do not know. 
                        You have access to information provided by the user as DOCUMENT to answer the QUESTION, and nothing else. 
                        Use three sentences maximum and keep the answer concise.
                        DOCUMENT: <context>  

                [User]: <prompt>
                ```
                This approach places the grounding context within the model’s instruction space.

                **3. Single-Turn Concatenated RAG**  
                Both the document and question are concatenated in a single user message:
                ```
                [System]: You are an assistant for question-answering tasks. 
                        Given the QUESTION and DOCUMENT you must answer the QUESTION using the information in the DOCUMENT. 
                        You must not offer new information beyond the context provided in the DOCUMENT. Do not add any external knowledge. 
                        The ANSWER also must not contradict information provided in the DOCUMENT. 
                        If the DOCUMENT does not contain the facts to answer the QUESTION or you do not know the answer, you truthfully say that you do not know. 
                        You have access to information provided by the user as DOCUMENT to answer the QUESTION, and nothing else. 
                        Use three sentences maximum and keep the answer concise.
                        
                [User]: 
                DOCUMENT: <context>  
                QUESTION: <prompt>

                ```
                This is the most compact format, sending everything as one prompt input.

                ### Metric

                The values in the table indicate the **hallucination rate (%)** of answers deemed factually incorrect or ungrounded given the provided context.

                """

            
            )

            gr.Markdown(rag_techniques_markdown, elem_classes="markdown-text")


            rag_leaderboard = Leaderboard(
                value=RAG_DF,
                datatype=["markdown", "number", "number", "number"],
                select_columns=SelectColumns(
                    default_selection=[
                        "Models",
                        "Two-Turn Explicit RAG (%)",
                        "System-Prompt Injection RAG (%)",
                        "Single-Turn Concatenated RAG (%)"
                    ],
                    cant_deselect=["Models"],
                    label="Select RAG Method Columns:",
                ),
                search_columns=["Models"],
                bool_checkboxgroup_label=None,
                interactive=False,
                height=700 
            )




        with gr.TabItem("📝 Details", elem_id="llm-benchmark-tab-table", id=3):
            gr.Markdown((Path(__file__).parent / "docs.md").read_text(), elem_classes="markdown-text")

        with gr.TabItem("🚀 Submit Here! ", elem_id="llm-benchmark-tab-table", id=4):
            gr.Markdown((Path(__file__).parent / "submit.md").read_text(), elem_classes="markdown-text")

            # with gr.Column():
            #     with gr.Row():
            #         gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")

            #     with gr.Column():
            #         with gr.Accordion(
            #             f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
            #             open=False,
            #         ):
            #             with gr.Row():
            #                 finished_eval_table = gr.components.Dataframe(
            #                     value=finished_eval_queue_df,
            #                     headers=EVAL_COLS,
            #                     datatype=EVAL_TYPES,
            #                     row_count=5,
            #                 )
            #         with gr.Accordion(
            #             f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
            #             open=False,
            #         ):
            #             with gr.Row():
            #                 running_eval_table = gr.components.Dataframe(
            #                     value=running_eval_queue_df,
            #                     headers=EVAL_COLS,
            #                     datatype=EVAL_TYPES,
            #                     row_count=5,
            #                 )

            #         with gr.Accordion(
            #             f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
            #             open=False,
            #         ):
            #             with gr.Row():
            #                 pending_eval_table = gr.components.Dataframe(
            #                     value=pending_eval_queue_df,
            #                     headers=EVAL_COLS,
            #                     datatype=EVAL_TYPES,
            #                     row_count=5,
            #                 )
            # with gr.Row():
            #     gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")

            # with gr.Row():
            #     with gr.Column():
            #         model_name_textbox = gr.Textbox(label="Model name")
            #         revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
            #         model_type = gr.Dropdown(
            #             choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
            #             label="Model type",
            #             multiselect=False,
            #             value=None,
            #             interactive=True,
            #         )

            #     with gr.Column():
            #         precision = gr.Dropdown(
            #             choices=[i.value.name for i in Precision if i != Precision.Unknown],
            #             label="Precision",
            #             multiselect=False,
            #             value="float16",
            #             interactive=True,
            #         )
            #         weight_type = gr.Dropdown(
            #             choices=[i.value.name for i in WeightType],
            #             label="Weights type",
            #             multiselect=False,
            #             value="Original",
            #             interactive=True,
            #         )
            #         base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")

            # submit_button = gr.Button("Submit Eval")
            # submission_result = gr.Markdown()
            # submit_button.click(
            #     add_new_eval,
            #     [
            #         model_name_textbox,
            #         base_model_name_textbox,
            #         revision_name_textbox,
            #         precision,
            #         weight_type,
            #         model_type,
            #     ],
            #     submission_result,
            # )

    # with gr.Row():
    #     with gr.Accordion("📙 Citation", open=False):
    #         citation_button = gr.Textbox(
    #             value=CITATION_BUTTON_TEXT,
    #             label=CITATION_BUTTON_LABEL,
    #             lines=20,
    #             elem_id="citation-button",
    #             show_copy_button=True,
    #         )

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch(show_api=False)