Spaces:
Running
Running
File size: 13,207 Bytes
5ed81fc 0f09e67 5ed81fc 0f09e67 5ed81fc 0f09e67 5ed81fc 0f09e67 5ed81fc 0f09e67 5ed81fc 0f09e67 5ed81fc 0f09e67 5ed81fc 0f09e67 5ed81fc 0f09e67 5ed81fc 0f09e67 5ed81fc 0f09e67 5ed81fc 0f09e67 5ed81fc 0f09e67 5ed81fc 0f09e67 5ed81fc 0f09e67 379bb4d 0f09e67 5ed81fc 0f09e67 5ed81fc 0f09e67 5ed81fc 0f09e67 5ed81fc 0f09e67 5ed81fc 0f09e67 5ed81fc 0f09e67 5ed81fc 0f09e67 5ed81fc 0f09e67 5ed81fc 0f09e67 5ed81fc 0f09e67 379bb4d 0f09e67 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
import os
import gc
import cv2
import requests
import numpy as np
import gradio as gr
import torch
import traceback
from tqdm import tqdm
from realesrgan.archs.srvgg_arch import SRVGGNetCompact
from gfpgan.utils import GFPGANer
from realesrgan.utils import RealESRGANer
from basicsr.archs.rrdbnet_arch import RRDBNet
# Define URLs and their corresponding local storage paths
face_model = {
"GFPGANv1.2.pth": "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.2.pth",
"GFPGANv1.3.pth": "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth",
"GFPGANv1.4.pth": "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth",
"RestoreFormer.pth": "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/RestoreFormer.pth",
"CodeFormer.pth": "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/CodeFormer.pth",
}
realesr_model = {
"realesr-general-x4v3.pth": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth",
"realesr-animevideov3.pth": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth",
"RealESRGAN_x4plus_anime_6B.pth": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth",
"RealESRGAN_x2plus.pth": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth",
"RealESRNet_x4plus.pth": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth",
"RealESRGAN_x4plus.pth": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth",
"4x-AnimeSharp.pth": "https://huggingface.co/utnah/esrgan/resolve/main/4x-AnimeSharp.pth?download=true",
}
files_to_download = [
( "a1.jpg",
"https://thumbs.dreamstime.com/b/tower-bridge-traditional-red-bus-black-white-colors-view-to-tower-bridge-london-black-white-colors-108478942.jpg" ),
( "a2.jpg",
"https://media.istockphoto.com/id/523514029/photo/london-skyline-b-w.jpg?s=612x612&w=0&k=20&c=kJS1BAtfqYeUDaORupj0sBPc1hpzJhBUUqEFfRnHzZ0=" ),
( "a3.jpg",
"https://i.guim.co.uk/img/media/06f614065ed82ca0e917b149a32493c791619854/0_0_3648_2789/master/3648.jpg?width=700&quality=85&auto=format&fit=max&s=05764b507c18a38590090d987c8b6202" ),
( "a4.jpg",
"https://i.pinimg.com/736x/46/96/9e/46969eb94aec2437323464804d27706d--victorian-london-victorian-era.jpg" ),
]
# Ensure the target directory exists
os.makedirs("weights", exist_ok=True)
os.makedirs('output', exist_ok=True)
def download_from_url(output_path, url):
try:
# Check if the file already exists
if os.path.exists(output_path):
print(f"File already exists, skipping download: {output_path}")
return
print(f"Downloading: {url}")
with requests.get(url, stream=True) as response, open(output_path, "wb") as f:
total_size = int(response.headers.get('content-length', 0))
with tqdm(total=total_size, unit='B', unit_scale=True) as pbar:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
pbar.update(len(chunk))
print(f"Download successful: {output_path}")
except requests.RequestException as e:
print(f"Download failed: {url}, Error: {e}")
# Iterate through each file
for output_path, url in files_to_download:
# Check if the file already exists
if os.path.exists(output_path):
print(f"File already exists, skipping download: {output_path}")
continue
# Start downloading
download_from_url(output_path, url)
def inference(img, version, realesr, scale: float):
print(img, version, scale)
try:
img_name = os.path.basename(str(img))
basename, extension = os.path.splitext(img_name)
img = cv2.imread(img, cv2.IMREAD_UNCHANGED)
if len(img.shape) == 3 and img.shape[2] == 4:
img_mode = 'RGBA'
elif len(img.shape) == 2: # for gray inputs
img_mode = None
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
else:
img_mode = None
h, w = img.shape[0:2]
if h < 300:
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)
if version:
download_from_url(os.path.join("weights", version), face_model[version])
if realesr:
download_from_url(os.path.join("weights", realesr), realesr_model[realesr])
# background enhancer with RealESRGAN
if realesr == 'RealESRGAN_x4plus.pth': # x4 RRDBNet model
netscale = 4
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=netscale)
elif realesr == 'RealESRNet_x4plus.pth': # x4 RRDBNet model
netscale = 4
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=netscale)
elif realesr == 'RealESRGAN_x4plus_anime_6B.pth': # x4 RRDBNet model with 6 blocks
netscale = 4
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=netscale)
elif realesr == 'RealESRGAN_x2plus.pth': # x2 RRDBNet model
netscale = 2
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=netscale)
elif realesr == 'realesr-animevideov3.pth': # x4 VGG-style model (XS size)
netscale = 4
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=netscale, act_type='prelu')
elif realesr == 'realesr-general-x4v3.pth': # x4 VGG-style model (S size)
netscale = 4
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=netscale, act_type='prelu')
# elif realesr == '4x-AnimeSharp.pth': # 4x-AnimeSharp
# netscale = 4
# model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=netscale)
half = True if torch.cuda.is_available() else False
upsampler = RealESRGANer(scale=netscale, model_path=os.path.join("weights", realesr), model=model, tile=0, tile_pad=10, pre_pad=0, half=half)
face_enhancer = None
if version == 'GFPGANv1.2.pth':
face_enhancer = GFPGANer(
model_path='weights/GFPGANv1.2.pth', upscale=scale, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
elif version == 'GFPGANv1.3.pth':
face_enhancer = GFPGANer(
model_path='weights/GFPGANv1.3.pth', upscale=scale, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
elif version == 'GFPGANv1.4.pth':
face_enhancer = GFPGANer(
model_path='weights/GFPGANv1.4.pth', upscale=scale, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
elif version == 'RestoreFormer.pth':
face_enhancer = GFPGANer(
model_path='weights/RestoreFormer.pth', upscale=scale, arch='RestoreFormer', channel_multiplier=2, bg_upsampler=upsampler)
elif version == 'CodeFormer.pth':
face_enhancer = GFPGANer(
model_path='weights/CodeFormer.pth', upscale=scale, arch='CodeFormer', channel_multiplier=2, bg_upsampler=upsampler)
files = []
outputs = []
try:
if face_enhancer:
cropped_faces, restored_aligned, restored_img = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
# save faces
if cropped_faces and restored_aligned:
for idx, (cropped_face, restored_face) in enumerate(zip(cropped_faces, restored_aligned)):
# save cropped face
save_crop_path = f"output/{basename}{idx:02d}_cropped_faces.png"
cv2.imwrite(save_crop_path, cropped_face)
# save restored face
save_restore_path = f"output/{basename}{idx:02d}_restored_faces.png"
cv2.imwrite(save_restore_path, restored_face)
# save comparison image
save_cmp_path = f"output/{basename}{idx:02d}_cmp.png"
cmp_img = np.concatenate((cropped_face, restored_face), axis=1)
cv2.imwrite(save_cmp_path, cmp_img)
files.append(save_crop_path)
files.append(save_restore_path)
files.append(save_cmp_path)
outputs.append(cv2.cvtColor(cropped_face, cv2.COLOR_BGR2RGB))
outputs.append(cv2.cvtColor(restored_face, cv2.COLOR_BGR2RGB))
outputs.append(cv2.cvtColor(cmp_img, cv2.COLOR_BGR2RGB))
else:
restored_img, _ = upsampler.enhance(img, outscale=scale)
except RuntimeError as error:
print(traceback.format_exc())
print('Error', error)
finally:
if face_enhancer:
face_enhancer._cleanup()
else:
# Free GPU memory and clean up resources
torch.cuda.empty_cache()
gc.collect()
try:
if scale != 2:
interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4
h, w = img.shape[0:2]
restored_img = cv2.resize(restored_img, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation)
except Exception as error:
print(traceback.format_exc())
print("wrong scale input.", error)
if not extension:
extension = ".png" if img_mode == "RGBA" else ".jpg" # RGBA images should be saved in png format
save_path = f"output/{basename}{extension}"
cv2.imwrite(save_path, restored_img)
restored_img = cv2.cvtColor(restored_img, cv2.COLOR_BGR2RGB)
files.append(save_path)
outputs.append(restored_img)
return outputs, files
except Exception as error:
print(traceback.format_exc())
print("global exception", error)
return None, None
title = "Image Upscaling & Restoration(esp. Face) using GFPGAN Algorithm"
description = r"""Gradio demo for <a href='https://github.com/TencentARC/GFPGAN' target='_blank'><b>GFPGAN: Towards Real-World Blind Face Restoration and Upscalling of the image with a Generative Facial Prior</b></a>.<br>
Practically the algorithm is used to restore your **old photos** or improve **AI-generated faces**.<br>
To use it, simply just upload the concerned image.<br>
"""
article = r"""
[](https://github.com/TencentARC/GFPGAN/releases)
[](https://github.com/TencentARC/GFPGAN)
[](https://arxiv.org/abs/2101.04061)
<center><img src='https://visitor-badge.glitch.me/badge?page_id=dj_face_restoration_GFPGAN' alt='visitor badge'></center>
"""
demo = gr.Interface(
inference, [
gr.Image(type="filepath", label="Input", format="png"),
gr.Dropdown(["GFPGANv1.2.pth",
"GFPGANv1.3.pth",
"GFPGANv1.4.pth",
"RestoreFormer.pth",
# "CodeFormer.pth",
None], type="value", value='GFPGANv1.4.pth', label='Face Restoration version', info="Face Restoration and RealESR can be freely combined in different ways, or one can be set to \"None\" to use only the other model. Face Restoration is primarily used for face restoration in real-life images, while RealESR serves as a background restoration model."),
gr.Dropdown(["realesr-general-x4v3.pth",
"realesr-animevideov3.pth",
"RealESRGAN_x4plus_anime_6B.pth",
"RealESRGAN_x2plus.pth",
"RealESRNet_x4plus.pth",
"RealESRGAN_x4plus.pth",
# "4x-AnimeSharp.pth",
None], type="value", value='realesr-general-x4v3.pth', label='RealESR version'),
gr.Number(label="Rescaling factor", value=2),
# gr.Slider(0, 100, label='Weight, only for CodeFormer. 0 for better quality, 100 for better identity', value=50)
], [
gr.Gallery(type="numpy", label="Output (The whole image)", format="png"),
gr.File(label="Download the output image")
],
title=title,
description=description,
article=article,
examples=[['a1.jpg', 'GFPGANv1.4.pth', "realesr-general-x4v3.pth", 2],
['a2.jpg', 'GFPGANv1.4.pth', "realesr-general-x4v3.pth", 2],
['a3.jpg', 'GFPGANv1.4.pth', "realesr-general-x4v3.pth", 2],
['a4.jpg', 'GFPGANv1.4.pth', "realesr-general-x4v3.pth", 2]])
demo.queue(default_concurrency_limit=4)
demo.launch(inbrowser=True) |