File size: 5,884 Bytes
72ab3a1
664d4ee
05026d9
 
72ab3a1
d9f1916
f8cd8cc
3a2b389
2fb3bf7
000642c
d316383
d9f1916
 
05026d9
f8cd8cc
f7f36ca
 
664d4ee
f8cd8cc
d9f1916
f8cd8cc
05026d9
 
 
 
664d4ee
f7f36ca
504cee7
05026d9
664d4ee
 
2fb3bf7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc6faa5
 
 
3a2b389
2fb3bf7
000642c
6129880
000642c
d9f1916
664d4ee
6129880
72ab3a1
 
 
 
 
 
 
664d4ee
72ab3a1
 
 
 
 
 
 
 
 
664d4ee
72ab3a1
 
 
 
 
 
 
 
504cee7
 
 
 
 
 
6129880
05026d9
6129880
 
 
664d4ee
6129880
 
 
 
05026d9
 
 
 
 
6129880
 
05026d9
 
 
 
 
 
 
ea52f2e
d9f1916
d316383
 
664d4ee
 
d316383
 
 
 
 
 
 
 
 
 
 
664d4ee
d316383
 
 
 
664d4ee
d316383
 
664d4ee
d316383
 
6129880
 
 
10286af
2fb3bf7
664d4ee
10286af
6129880
664d4ee
6129880
 
 
 
 
 
 
 
 
664d4ee
6129880
000642c
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
from time import sleep
import logging
import sys
import re

import httpx
from fastapi import FastAPI
from fastapi.responses import JSONResponse, FileResponse
from transformers import pipeline
from phishing_datasets import submit_entry
from url_tools import extract_urls, resolve_short_url, extract_domain_from_url
from urlscan_client import UrlscanClient
import requests
from mnemonic_attack import find_confusable_brand

from models.models import MessageModel, QueryModel, AppModel, InputModel, OutputModel, ReportModel
from models.enums import ActionModel, SubActionModel

app = FastAPI()
urlscan = UrlscanClient()

# Remove all handlers associated with the root logger object
for handler in logging.root.handlers[:]:
    logging.root.removeHandler(handler)

logging.basicConfig(
    level=logging.INFO,
    format='%(levelname)s:     %(asctime)s     %(message)s',
    handlers=[logging.StreamHandler(sys.stdout)]
)

pipe = pipeline(task="text-classification", model="mrm8488/bert-tiny-finetuned-sms-spam-detection")

@app.get("/.well-known/apple-app-site-association", include_in_schema=False)
def get_well_known_aasa():
    return JSONResponse(
        content={
            "messagefilter": {
                "apps": [
                    "X9NN3FSS3T.com.lela.Serenity.SerenityMessageFilterExtension",
                    "X9NN3FSS3T.com.lela.Serenity"
                ]
            }
        },
        media_type="application/json"
    )

@app.get("/robots.txt", include_in_schema=False)
def get_robots_txt():
    return FileResponse("robots.txt")

@app.post("/predict")
def predict(model: InputModel) -> OutputModel:
    sender = model.query.sender
    text = model.query.message.text

    logging.info(f"[{sender}] {text}")

    # Debug sleep
    pattern = r"^Sent from your Twilio trial account - sleep (\d+)$"
    match = re.search(pattern, text)

    if match:
        number_str = match.group(1)
        sleep_duration = int(number_str)
        logging.debug(f"[DEBUG SLEEP] Sleeping for {sleep_duration} seconds for sender {sender}")
        sleep(sleep_duration)
        return OutputModel(action=ActionModel.JUNK, sub_action=SubActionModel.NONE)

    # Debug category
    pattern = r"^Sent from your Twilio trial account - (junk|transaction|promotion)$"
    match = re.search(pattern, text)

    if match:
        category_str = match.group(1)
        logging.info(f"[DEBUG CATEGORY] Forced category: {category_str} for sender {sender}")
        match category_str:
            case 'junk':
                return OutputModel(action=ActionModel.JUNK, sub_action=SubActionModel.NONE)
            case 'transaction':
                return OutputModel(action=ActionModel.TRANSACTION, sub_action=SubActionModel.NONE)
            case 'promotion':
                return OutputModel(action=ActionModel.PROMOTION, sub_action=SubActionModel.NONE)

    # Brand usurpation detection using confusables
    confusable_brand = find_confusable_brand(text)
    if confusable_brand:
        logging.warning(f"[BRAND USURPATION] Confusable/homoglyph variant of brand '{confusable_brand}' detected in message. Classified as JUNK.")
        return OutputModel(action=ActionModel.JUNK, sub_action=SubActionModel.NONE)

    result = pipe(text)

    label = result[0]['label']
    score = result[0]['score']

    logging.info(f"[CLASSIFICATION] label={label} score={score}")

    if label == 'LABEL_0':
        score = 1 - score

    # Pattern for detecting an alphanumeric SenderID
    alphanumeric_sender_pattern = r'^[A-Za-z][A-Za-z0-9\-\.]{2,14}$'
    # Pattern for detecting a short code
    shorten_sender_pattern = r'^(?:3\d{4}|[4-8]\d{4})$'

    commercial_stop = False

    # Detection of commercial senders (short code or alphanumeric)
    if re.search(shorten_sender_pattern, sender):
        logging.info("[COMMERCIAL] Commercial sender detected (short code)")
        score = score * 0.7
    elif re.match(alphanumeric_sender_pattern, sender):
        logging.info("[COMMERCIAL] Alphanumeric SenderID detected")
        score = score * 0.7

    urls = extract_urls(text)

    if urls:
        logging.info(f"[URL] URLs found: {urls}")
        logging.info("[URL] Searching for previous scans")
        search_results = [urlscan.search(f"domain:{extract_domain_from_url(url)}") for url in urls]

        scan_results = []
        for search_result in search_results:
            results = search_result.get('results', [])
            for result in results:
                result_uuid = result.get('_id', str)
                scan_result = urlscan.get_result(result_uuid)
                scan_results.append(scan_result)

        if not scan_results:
            logging.info("[URL] No previous scan found, launching a new scan...")
            scan_results = [urlscan.scan(url) for url in urls]

        for result in scan_results:
            overall = result.get('verdicts', {}).get('overall', {})
            logging.info(f"[URLSCAN] Overall verdict: {overall}")
            if overall.get('hasVerdicts'):
                score = overall.get('score')
                logging.info(f"[URLSCAN] Verdict score: {score}")

                if 0 < overall.get('score'):
                    score = 1.0
                    break
                elif overall.get('score') < 0:
                    score = score * 0.9
    else:
        logging.info(f"[URL] No URL found")
        score = score * 0.9

    logging.info(f"[FINAL SCORE] {score}")
    action = ActionModel.NONE
    if score > 0.7:
        action=ActionModel.JUNK
    elif score > 0.5:
        if commercial_stop:
            action=ActionModel.PROMOTION
        else:
            action=ActionModel.JUNK

    logging.info(f"[FINAL ACTION] {action}")
    return OutputModel(action=action, sub_action=SubActionModel.NONE)

@app.post("/report")
def report(model: ReportModel):
    submit_entry(model.sender, model.message)