File size: 2,496 Bytes
0aeab2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e383bbb
 
 
0aeab2f
 
 
e383bbb
0aeab2f
 
 
 
 
 
 
 
 
 
e383bbb
 
0aeab2f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
# import gradio as gr
# import torch
# from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
# from PIL import Image
# import base64
# from io import BytesIO

# # You can change these:
# BASE_MODEL = "runwayml/stable-diffusion-v1-5"
# CONTROLNET_ID = "lllyasviel/sd-controlnet-canny"  # placeholder; change to a QR-focused ControlNet if you have one

# device = "cuda" if torch.cuda.is_available() else "cpu"

# controlnet = ControlNetModel.from_pretrained(
#     CONTROLNET_ID, torch_dtype=torch.float16 if device=="cuda" else torch.float32
# )

# pipe = StableDiffusionControlNetPipeline.from_pretrained(
#     BASE_MODEL,
#     controlnet=controlnet,
#     torch_dtype=torch.float16 if device=="cuda" else torch.float32,
#     safety_checker=None
# )
# pipe.to(device)

# def generate(prompt, control_image, guidance_scale=7.5, steps=30, seed=0):
#     generator = torch.Generator(device=device).manual_seed(int(seed)) if seed else None
#     img = pipe(
#         prompt=prompt,
#         image=control_image,
#         num_inference_steps=int(steps),
#         guidance_scale=float(guidance_scale),
#         generator=generator
#     ).images[0]
#     return img

# with gr.Blocks() as demo:
#     gr.Markdown("# ControlNet Image Generator")
#     with gr.Row():
#         prompt = gr.Textbox(label="Prompt", value="A futuristic poster, high detail")
#         seed = gr.Number(label="Seed (0=random)", value=0)
#     with gr.Row():
#         control = gr.Image(type="pil", label="Control image (e.g., QR or edge map)")
#         steps = gr.Slider(10, 50, 30, step=1, label="Steps")
#         guidance = gr.Slider(1.0, 12.0, 7.5, step=0.1, label="Guidance scale")
#     out = gr.Image(label="Result")

#     btn = gr.Button("Generate")
#     btn.click(generate, [prompt, control, guidance, steps, seed], out)

#     # Enable simple API use
#     gr.Examples([], inputs=[prompt, control, guidance, steps, seed], outputs=out)

# demo.launch()


import gradio as gr
from PIL import Image

def generate(prompt, control_image, guidance, steps, seed):
    # dummy return so Space builds
    return control_image

demo = gr.Interface(
    fn=generate,
    inputs=[
        gr.Textbox(label="Prompt"),
        gr.Image(type="pil", label="Control Image"),
        gr.Slider(1, 12, 7.5, label="Guidance scale"),
        gr.Slider(10, 50, 30, step=1, label="Steps"),
        gr.Number(0, label="Seed"),
    ],
    outputs=gr.Image(),
)

if __name__ == "__main__":
    demo.launch()