Tanut commited on
Commit
1fc8d06
·
1 Parent(s): c83cd29

Checkconnect

Browse files
Files changed (1) hide show
  1. app.py +102 -49
app.py CHANGED
@@ -1,55 +1,108 @@
1
- import gradio as gr
2
- import torch
3
- from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  from PIL import Image
5
- import base64
6
- from io import BytesIO
 
7
 
8
- # You can change these:
9
- BASE_MODEL = "runwayml/stable-diffusion-v1-5"
10
- CONTROLNET_ID = "lllyasviel/sd-controlnet-canny" # placeholder; change to a QR-focused ControlNet if you have one
 
 
11
 
12
- device = "cuda" if torch.cuda.is_available() else "cpu"
 
 
 
13
 
14
- controlnet = ControlNetModel.from_pretrained(
15
- CONTROLNET_ID, torch_dtype=torch.float16 if device=="cuda" else torch.float32
16
- )
 
17
 
18
- pipe = StableDiffusionControlNetPipeline.from_pretrained(
19
- BASE_MODEL,
20
- controlnet=controlnet,
21
- torch_dtype=torch.float16 if device=="cuda" else torch.float32,
22
- safety_checker=None
 
 
 
 
 
 
23
  )
24
- pipe.to(device)
25
-
26
- def generate(prompt, control_image, guidance_scale=7.5, steps=30, seed=0):
27
- print("API called:", type(control_image))
28
- generator = torch.Generator(device=device).manual_seed(int(seed)) if seed else None
29
- img = pipe(
30
- prompt=prompt,
31
- image=control_image,
32
- num_inference_steps=int(steps),
33
- guidance_scale=float(guidance_scale),
34
- generator=generator
35
- ).images[0]
36
- return img
37
-
38
- with gr.Blocks() as demo:
39
- gr.Markdown("# ControlNet Image Generator")
40
- with gr.Row():
41
- prompt = gr.Textbox(label="Prompt", value="A futuristic poster, high detail")
42
- seed = gr.Number(label="Seed (0=random)", value=0)
43
- with gr.Row():
44
- control = gr.Image(type="pil", label="Control image (e.g., QR or edge map)")
45
- steps = gr.Slider(10, 50, 30, step=1, label="Steps")
46
- guidance = gr.Slider(1.0, 12.0, 7.5, step=0.1, label="Guidance scale")
47
- out = gr.Image(label="Result")
48
-
49
- btn = gr.Button("Generate")
50
- btn.click(generate, [prompt, control, guidance, steps, seed], out)
51
-
52
- # Enable simple API use
53
- gr.Examples([], inputs=[prompt, control, guidance, steps, seed], outputs=out)
54
-
55
- demo.launch()
 
1
+ # import gradio as gr
2
+ # import torch
3
+ # from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
4
+ # from PIL import Image
5
+ # import base64
6
+ # from io import BytesIO
7
+
8
+ # # You can change these:
9
+ # BASE_MODEL = "runwayml/stable-diffusion-v1-5"
10
+ # CONTROLNET_ID = "lllyasviel/sd-controlnet-canny" # placeholder; change to a QR-focused ControlNet if you have one
11
+
12
+ # device = "cuda" if torch.cuda.is_available() else "cpu"
13
+
14
+ # controlnet = ControlNetModel.from_pretrained(
15
+ # CONTROLNET_ID, torch_dtype=torch.float16 if device=="cuda" else torch.float32
16
+ # )
17
+
18
+ # pipe = StableDiffusionControlNetPipeline.from_pretrained(
19
+ # BASE_MODEL,
20
+ # controlnet=controlnet,
21
+ # torch_dtype=torch.float16 if device=="cuda" else torch.float32,
22
+ # safety_checker=None
23
+ # )
24
+ # pipe.to(device)
25
+
26
+ # def generate(prompt, control_image, guidance_scale=7.5, steps=30, seed=0):
27
+ # print("API called:", type(control_image))
28
+ # generator = torch.Generator(device=device).manual_seed(int(seed)) if seed else None
29
+ # img = pipe(
30
+ # prompt=prompt,
31
+ # image=control_image,
32
+ # num_inference_steps=int(steps),
33
+ # guidance_scale=float(guidance_scale),
34
+ # generator=generator
35
+ # ).images[0]
36
+ # return img
37
+
38
+ # with gr.Blocks() as demo:
39
+ # gr.Markdown("# ControlNet Image Generator")
40
+ # with gr.Row():
41
+ # prompt = gr.Textbox(label="Prompt", value="A futuristic poster, high detail")
42
+ # seed = gr.Number(label="Seed (0=random)", value=0)
43
+ # with gr.Row():
44
+ # control = gr.Image(type="pil", label="Control image (e.g., QR or edge map)")
45
+ # steps = gr.Slider(10, 50, 30, step=1, label="Steps")
46
+ # guidance = gr.Slider(1.0, 12.0, 7.5, step=0.1, label="Guidance scale")
47
+ # out = gr.Image(label="Result")
48
+
49
+ # btn = gr.Button("Generate")
50
+ # btn.click(generate, [prompt, control, guidance, steps, seed], out)
51
+
52
+ # # Enable simple API use
53
+ # gr.Examples([], inputs=[prompt, control, guidance, steps, seed], outputs=out)
54
+
55
+ # demo.launch()
56
+
57
+ # app.py — minimal, API-stable echo server + Gradio UI
58
+ import base64, io
59
+ from typing import List, Any
60
  from PIL import Image
61
+ import gradio as gr
62
+ from fastapi import FastAPI
63
+ from pydantic import BaseModel
64
 
65
+ # ---- helpers ----
66
+ def data_url_to_pil(data_url: str) -> Image.Image:
67
+ # expects "data:image/<ext>;base64,<...>"
68
+ b64 = data_url.split(",", 1)[1]
69
+ return Image.open(io.BytesIO(base64.b64decode(b64))).convert("RGB")
70
 
71
+ def pil_to_data_url(img: Image.Image) -> str:
72
+ buf = io.BytesIO()
73
+ img.save(buf, format="PNG")
74
+ return "data:image/png;base64," + base64.b64encode(buf.getvalue()).decode()
75
 
76
+ # ---- your model fn (for now just echo control image) ----
77
+ def generate(prompt: str, control_image: Image.Image, guidance: float, steps: int, seed: int):
78
+ # TODO: replace with ControlNet pipeline call
79
+ return control_image
80
 
81
+ # ---- Gradio UI (not required for API, but nice to see) ----
82
+ demo = gr.Interface(
83
+ fn=generate,
84
+ inputs=[
85
+ gr.Textbox(label="Prompt", value="High-quality artistic style, preserve structure"),
86
+ gr.Image(type="pil", label="Control Image (PNG/JPG)"),
87
+ gr.Slider(1, 12, 7.5, step=0.1, label="Guidance scale"),
88
+ gr.Slider(10, 50, 30, step=1, label="Steps"),
89
+ gr.Number(0, label="Seed"),
90
+ ],
91
+ outputs=gr.Image(label="Result"),
92
  )
93
+
94
+ # ---- FastAPI endpoint (stable path for Postman/Next.js) ----
95
+ app = FastAPI()
96
+
97
+ class PredictIn(BaseModel):
98
+ data: List[Any] # [prompt, controlImageBase64, guidance, steps, seed]
99
+
100
+ @app.post("/api/predict/0")
101
+ def predict(payload: PredictIn):
102
+ prompt, control_b64, guidance, steps, seed = payload.data
103
+ img = data_url_to_pil(control_b64) if isinstance(control_b64, str) else control_b64
104
+ out = generate(str(prompt), img, float(guidance), int(steps), int(seed))
105
+ return { "data": [ pil_to_data_url(out) ] }
106
+
107
+ # mount Gradio at "/"
108
+ app = gr.mount_gradio_app(app, demo, path="/")