Spaces:
Runtime error
Runtime error
Tanut
commited on
Commit
·
2e2f472
1
Parent(s):
4a9e124
Fix style
Browse files- app.py +10 -18
- requirements.txt +1 -1
app.py
CHANGED
@@ -5,7 +5,6 @@ from PIL import Image
|
|
5 |
import qrcode
|
6 |
from qrcode.constants import ERROR_CORRECT_H
|
7 |
|
8 |
-
|
9 |
# ========= device/dtype =========
|
10 |
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
11 |
dtype = torch.float16 if device != "cpu" else torch.float32
|
@@ -44,21 +43,20 @@ def make_qr(url: str = "http://www.mybirdfire.com", size: int = 512, border: int
|
|
44 |
img = qr.make_image(fill_color="black", back_color="white").convert("RGB")
|
45 |
return img.resize((size, size), resample=Image.NEAREST)
|
46 |
|
47 |
-
# ========= ControlNet
|
48 |
-
# --- SDXL dual ControlNet stylizer (canny + tile) ---
|
49 |
from diffusers import StableDiffusionXLControlNetPipeline, ControlNetModel
|
50 |
from diffusers.schedulers.scheduling_euler_discrete import EulerDiscreteScheduler
|
51 |
from controlnet_aux import CannyDetector
|
52 |
|
53 |
-
SDXL_MODEL = "stabilityai/stable-diffusion-xl-base-1.0" # swap to your SDXL anime
|
54 |
CN_CANNY = "diffusers/controlnet-canny-sdxl-1.0"
|
55 |
-
|
56 |
|
57 |
_sdxl = {"pipe": None}
|
58 |
def _load_sdxl_dual():
|
59 |
if _sdxl["pipe"] is None:
|
60 |
cn1 = ControlNetModel.from_pretrained(CN_CANNY, torch_dtype=dtype)
|
61 |
-
cn2 = ControlNetModel.from_pretrained(
|
62 |
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
63 |
SDXL_MODEL, controlnet=[cn1, cn2], torch_dtype=dtype, safety_checker=None
|
64 |
).to(device)
|
@@ -80,7 +78,7 @@ def stylize_qr_sdxl(prompt: str, steps: int=28, guidance: float=7.0, seed: int=1
|
|
80 |
|
81 |
gen = torch.Generator(device=device).manual_seed(int(seed)) if int(seed)!=0 else None
|
82 |
|
83 |
-
# Control weights + schedule (canny,
|
84 |
cn_scales = [1.1, 0.6]
|
85 |
cn_start = [0.25, 0.00]
|
86 |
cn_end = [0.95, 1.00]
|
@@ -89,18 +87,14 @@ def stylize_qr_sdxl(prompt: str, steps: int=28, guidance: float=7.0, seed: int=1
|
|
89 |
img = pipe(
|
90 |
prompt=prompt,
|
91 |
negative_prompt=NEG,
|
92 |
-
image=[edges, qr], # canny first,
|
93 |
-
controlnet_conditioning_scale=cn_scales,
|
94 |
-
control_guidance_start=cn_start,
|
95 |
-
control_guidance_end=cn_end,
|
96 |
num_inference_steps=int(steps),
|
97 |
guidance_scale=float(guidance),
|
98 |
generator=gen
|
99 |
).images[0]
|
100 |
-
|
101 |
-
# optional: re‑overlay razor‑sharp finder squares to boost scanning
|
102 |
-
# (uncomment if scans are borderline)
|
103 |
-
# img = overlay_finders(img, qr)
|
104 |
return img
|
105 |
|
106 |
if device in ("cuda", "mps"):
|
@@ -108,7 +102,6 @@ def stylize_qr_sdxl(prompt: str, steps: int=28, guidance: float=7.0, seed: int=1
|
|
108 |
return run()
|
109 |
return run()
|
110 |
|
111 |
-
|
112 |
# ========= UI =========
|
113 |
with gr.Blocks() as demo:
|
114 |
gr.Markdown("## Stable Diffusion + QR Code + ControlNet")
|
@@ -129,7 +122,7 @@ with gr.Blocks() as demo:
|
|
129 |
out_qr = gr.Image(label="QR Code", type="pil")
|
130 |
gr.Button("Generate QR").click(make_qr, [url, size, quiet], out_qr)
|
131 |
|
132 |
-
with gr.Tab("QR Stylizer (SDXL
|
133 |
p = gr.Textbox(label="Prompt", value="Sky, Moon, Bird, Blue, In the dark, Goddess, Sweet, Beautiful, Fantasy, Art, Anime")
|
134 |
st = gr.Slider(20, 40, 28, step=1, label="Steps")
|
135 |
cfg = gr.Slider(4.5, 9.0, 7.0, step=0.1, label="CFG")
|
@@ -139,6 +132,5 @@ with gr.Blocks() as demo:
|
|
139 |
out = gr.Image(label="Stylized QR (SDXL)")
|
140 |
gr.Button("Stylize").click(stylize_qr_sdxl, [p, st, cfg, sd, cl, ch], out)
|
141 |
|
142 |
-
|
143 |
if __name__ == "__main__":
|
144 |
demo.launch()
|
|
|
5 |
import qrcode
|
6 |
from qrcode.constants import ERROR_CORRECT_H
|
7 |
|
|
|
8 |
# ========= device/dtype =========
|
9 |
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
10 |
dtype = torch.float16 if device != "cpu" else torch.float32
|
|
|
43 |
img = qr.make_image(fill_color="black", back_color="white").convert("RGB")
|
44 |
return img.resize((size, size), resample=Image.NEAREST)
|
45 |
|
46 |
+
# ========= SDXL dual ControlNet stylizer (canny + softedge) =========
|
|
|
47 |
from diffusers import StableDiffusionXLControlNetPipeline, ControlNetModel
|
48 |
from diffusers.schedulers.scheduling_euler_discrete import EulerDiscreteScheduler
|
49 |
from controlnet_aux import CannyDetector
|
50 |
|
51 |
+
SDXL_MODEL = "stabilityai/stable-diffusion-xl-base-1.0" # swap to your SDXL anime model if desired
|
52 |
CN_CANNY = "diffusers/controlnet-canny-sdxl-1.0"
|
53 |
+
CN_SOFT = "diffusers/controlnet-softedge-sdxl-1.0" # <-- replaces non-existent tile SDXL
|
54 |
|
55 |
_sdxl = {"pipe": None}
|
56 |
def _load_sdxl_dual():
|
57 |
if _sdxl["pipe"] is None:
|
58 |
cn1 = ControlNetModel.from_pretrained(CN_CANNY, torch_dtype=dtype)
|
59 |
+
cn2 = ControlNetModel.from_pretrained(CN_SOFT, torch_dtype=dtype)
|
60 |
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
61 |
SDXL_MODEL, controlnet=[cn1, cn2], torch_dtype=dtype, safety_checker=None
|
62 |
).to(device)
|
|
|
78 |
|
79 |
gen = torch.Generator(device=device).manual_seed(int(seed)) if int(seed)!=0 else None
|
80 |
|
81 |
+
# Control weights + schedule (canny, softedge)
|
82 |
cn_scales = [1.1, 0.6]
|
83 |
cn_start = [0.25, 0.00]
|
84 |
cn_end = [0.95, 1.00]
|
|
|
87 |
img = pipe(
|
88 |
prompt=prompt,
|
89 |
negative_prompt=NEG,
|
90 |
+
image=[edges, qr], # canny first, softedge second
|
91 |
+
controlnet_conditioning_scale=cn_scales,
|
92 |
+
control_guidance_start=cn_start,
|
93 |
+
control_guidance_end=cn_end,
|
94 |
num_inference_steps=int(steps),
|
95 |
guidance_scale=float(guidance),
|
96 |
generator=gen
|
97 |
).images[0]
|
|
|
|
|
|
|
|
|
98 |
return img
|
99 |
|
100 |
if device in ("cuda", "mps"):
|
|
|
102 |
return run()
|
103 |
return run()
|
104 |
|
|
|
105 |
# ========= UI =========
|
106 |
with gr.Blocks() as demo:
|
107 |
gr.Markdown("## Stable Diffusion + QR Code + ControlNet")
|
|
|
122 |
out_qr = gr.Image(label="QR Code", type="pil")
|
123 |
gr.Button("Generate QR").click(make_qr, [url, size, quiet], out_qr)
|
124 |
|
125 |
+
with gr.Tab("QR Stylizer (SDXL canny + softedge)"):
|
126 |
p = gr.Textbox(label="Prompt", value="Sky, Moon, Bird, Blue, In the dark, Goddess, Sweet, Beautiful, Fantasy, Art, Anime")
|
127 |
st = gr.Slider(20, 40, 28, step=1, label="Steps")
|
128 |
cfg = gr.Slider(4.5, 9.0, 7.0, step=0.1, label="CFG")
|
|
|
132 |
out = gr.Image(label="Stylized QR (SDXL)")
|
133 |
gr.Button("Stylize").click(stylize_qr_sdxl, [p, st, cfg, sd, cl, ch], out)
|
134 |
|
|
|
135 |
if __name__ == "__main__":
|
136 |
demo.launch()
|
requirements.txt
CHANGED
@@ -5,4 +5,4 @@ accelerate
|
|
5 |
safetensors
|
6 |
gradio
|
7 |
qrcode[pil]
|
8 |
-
controlnet-aux
|
|
|
5 |
safetensors
|
6 |
gradio
|
7 |
qrcode[pil]
|
8 |
+
controlnet-aux
|