Spaces:
Running
on
Zero
Running
on
Zero
Tanut
commited on
Commit
·
31f7555
1
Parent(s):
0aeab2f
Rollback
Browse files
app.py
CHANGED
@@ -1,77 +1,54 @@
|
|
1 |
-
# import gradio as gr
|
2 |
-
# import torch
|
3 |
-
# from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
4 |
-
# from PIL import Image
|
5 |
-
# import base64
|
6 |
-
# from io import BytesIO
|
7 |
-
|
8 |
-
# # You can change these:
|
9 |
-
# BASE_MODEL = "runwayml/stable-diffusion-v1-5"
|
10 |
-
# CONTROLNET_ID = "lllyasviel/sd-controlnet-canny" # placeholder; change to a QR-focused ControlNet if you have one
|
11 |
-
|
12 |
-
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
-
|
14 |
-
# controlnet = ControlNetModel.from_pretrained(
|
15 |
-
# CONTROLNET_ID, torch_dtype=torch.float16 if device=="cuda" else torch.float32
|
16 |
-
# )
|
17 |
-
|
18 |
-
# pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
19 |
-
# BASE_MODEL,
|
20 |
-
# controlnet=controlnet,
|
21 |
-
# torch_dtype=torch.float16 if device=="cuda" else torch.float32,
|
22 |
-
# safety_checker=None
|
23 |
-
# )
|
24 |
-
# pipe.to(device)
|
25 |
-
|
26 |
-
# def generate(prompt, control_image, guidance_scale=7.5, steps=30, seed=0):
|
27 |
-
# generator = torch.Generator(device=device).manual_seed(int(seed)) if seed else None
|
28 |
-
# img = pipe(
|
29 |
-
# prompt=prompt,
|
30 |
-
# image=control_image,
|
31 |
-
# num_inference_steps=int(steps),
|
32 |
-
# guidance_scale=float(guidance_scale),
|
33 |
-
# generator=generator
|
34 |
-
# ).images[0]
|
35 |
-
# return img
|
36 |
-
|
37 |
-
# with gr.Blocks() as demo:
|
38 |
-
# gr.Markdown("# ControlNet Image Generator")
|
39 |
-
# with gr.Row():
|
40 |
-
# prompt = gr.Textbox(label="Prompt", value="A futuristic poster, high detail")
|
41 |
-
# seed = gr.Number(label="Seed (0=random)", value=0)
|
42 |
-
# with gr.Row():
|
43 |
-
# control = gr.Image(type="pil", label="Control image (e.g., QR or edge map)")
|
44 |
-
# steps = gr.Slider(10, 50, 30, step=1, label="Steps")
|
45 |
-
# guidance = gr.Slider(1.0, 12.0, 7.5, step=0.1, label="Guidance scale")
|
46 |
-
# out = gr.Image(label="Result")
|
47 |
-
|
48 |
-
# btn = gr.Button("Generate")
|
49 |
-
# btn.click(generate, [prompt, control, guidance, steps, seed], out)
|
50 |
-
|
51 |
-
# # Enable simple API use
|
52 |
-
# gr.Examples([], inputs=[prompt, control, guidance, steps, seed], outputs=out)
|
53 |
-
|
54 |
-
# demo.launch()
|
55 |
-
|
56 |
-
|
57 |
import gradio as gr
|
|
|
|
|
58 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
-
|
61 |
-
# dummy return so Space builds
|
62 |
-
return control_image
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
inputs=[
|
67 |
-
gr.Textbox(label="Prompt"),
|
68 |
-
gr.Image(type="pil", label="Control Image"),
|
69 |
-
gr.Slider(1, 12, 7.5, label="Guidance scale"),
|
70 |
-
gr.Slider(10, 50, 30, step=1, label="Steps"),
|
71 |
-
gr.Number(0, label="Seed"),
|
72 |
-
],
|
73 |
-
outputs=gr.Image(),
|
74 |
)
|
75 |
|
76 |
-
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
4 |
from PIL import Image
|
5 |
+
import base64
|
6 |
+
from io import BytesIO
|
7 |
+
|
8 |
+
# You can change these:
|
9 |
+
BASE_MODEL = "runwayml/stable-diffusion-v1-5"
|
10 |
+
CONTROLNET_ID = "lllyasviel/sd-controlnet-canny" # placeholder; change to a QR-focused ControlNet if you have one
|
11 |
|
12 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
13 |
|
14 |
+
controlnet = ControlNetModel.from_pretrained(
|
15 |
+
CONTROLNET_ID, torch_dtype=torch.float16 if device=="cuda" else torch.float32
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
)
|
17 |
|
18 |
+
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
19 |
+
BASE_MODEL,
|
20 |
+
controlnet=controlnet,
|
21 |
+
torch_dtype=torch.float16 if device=="cuda" else torch.float32,
|
22 |
+
safety_checker=None
|
23 |
+
)
|
24 |
+
pipe.to(device)
|
25 |
+
|
26 |
+
def generate(prompt, control_image, guidance_scale=7.5, steps=30, seed=0):
|
27 |
+
generator = torch.Generator(device=device).manual_seed(int(seed)) if seed else None
|
28 |
+
img = pipe(
|
29 |
+
prompt=prompt,
|
30 |
+
image=control_image,
|
31 |
+
num_inference_steps=int(steps),
|
32 |
+
guidance_scale=float(guidance_scale),
|
33 |
+
generator=generator
|
34 |
+
).images[0]
|
35 |
+
return img
|
36 |
+
|
37 |
+
with gr.Blocks() as demo:
|
38 |
+
gr.Markdown("# ControlNet Image Generator")
|
39 |
+
with gr.Row():
|
40 |
+
prompt = gr.Textbox(label="Prompt", value="A futuristic poster, high detail")
|
41 |
+
seed = gr.Number(label="Seed (0=random)", value=0)
|
42 |
+
with gr.Row():
|
43 |
+
control = gr.Image(type="pil", label="Control image (e.g., QR or edge map)")
|
44 |
+
steps = gr.Slider(10, 50, 30, step=1, label="Steps")
|
45 |
+
guidance = gr.Slider(1.0, 12.0, 7.5, step=0.1, label="Guidance scale")
|
46 |
+
out = gr.Image(label="Result")
|
47 |
+
|
48 |
+
btn = gr.Button("Generate")
|
49 |
+
btn.click(generate, [prompt, control, guidance, steps, seed], out)
|
50 |
+
|
51 |
+
# Enable simple API use
|
52 |
+
gr.Examples([], inputs=[prompt, control, guidance, steps, seed], outputs=out)
|
53 |
+
|
54 |
+
demo.launch()
|