Spaces:
Running
on
Zero
Running
on
Zero
Tanut
commited on
Commit
·
3a24bb3
1
Parent(s):
493d820
ControlNet Blend the image to QRCode
Browse files- app.py +61 -10
- requirements.txt +2 -1
app.py
CHANGED
@@ -5,11 +5,11 @@ from PIL import Image
|
|
5 |
import qrcode
|
6 |
from qrcode.constants import ERROR_CORRECT_H
|
7 |
|
8 |
-
#
|
9 |
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
10 |
dtype = torch.float16 if device != "cpu" else torch.float32
|
11 |
|
12 |
-
|
13 |
"runwayml/stable-diffusion-v1-5",
|
14 |
torch_dtype=dtype
|
15 |
).to(device)
|
@@ -17,19 +17,17 @@ pipe = StableDiffusionPipeline.from_pretrained(
|
|
17 |
def sd_generate(prompt, steps, guidance, seed):
|
18 |
gen = torch.Generator(device=device).manual_seed(int(seed)) if int(seed) != 0 else None
|
19 |
def run():
|
20 |
-
return
|
21 |
-
# autocast only where supported
|
22 |
if device in ("cuda", "mps"):
|
23 |
with torch.autocast(device):
|
24 |
return run()
|
25 |
-
|
26 |
-
return run()
|
27 |
|
28 |
-
#
|
29 |
def make_qr(url: str = "http://www.mybirdfire.com", size: int = 512, border: int = 2) -> Image.Image:
|
30 |
qr = qrcode.QRCode(
|
31 |
version=None,
|
32 |
-
error_correction=ERROR_CORRECT_H,
|
33 |
box_size=10,
|
34 |
border=border
|
35 |
)
|
@@ -38,9 +36,51 @@ def make_qr(url: str = "http://www.mybirdfire.com", size: int = 512, border: int
|
|
38 |
img = qr.make_image(fill_color="black", back_color="white").convert("RGB")
|
39 |
return img.resize((size, size), resample=Image.NEAREST)
|
40 |
|
41 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
with gr.Blocks() as demo:
|
43 |
-
gr.Markdown("## Stable Diffusion + QR (step by step)")
|
44 |
|
45 |
with gr.Tab("Stable Diffusion (prompt → image)"):
|
46 |
prompt = gr.Textbox(label="Prompt", value="A fantasy castle at sunset")
|
@@ -57,5 +97,16 @@ with gr.Blocks() as demo:
|
|
57 |
out_qr = gr.Image(label="QR Code", type="pil")
|
58 |
gr.Button("Generate QR").click(make_qr, [url, size, quiet], out_qr)
|
59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
if __name__ == "__main__":
|
61 |
demo.launch()
|
|
|
5 |
import qrcode
|
6 |
from qrcode.constants import ERROR_CORRECT_H
|
7 |
|
8 |
+
# ========= Stable Diffusion (prompt-only) =========
|
9 |
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
10 |
dtype = torch.float16 if device != "cpu" else torch.float32
|
11 |
|
12 |
+
sd_pipe = StableDiffusionPipeline.from_pretrained(
|
13 |
"runwayml/stable-diffusion-v1-5",
|
14 |
torch_dtype=dtype
|
15 |
).to(device)
|
|
|
17 |
def sd_generate(prompt, steps, guidance, seed):
|
18 |
gen = torch.Generator(device=device).manual_seed(int(seed)) if int(seed) != 0 else None
|
19 |
def run():
|
20 |
+
return sd_pipe(prompt, num_inference_steps=int(steps), guidance_scale=float(guidance), generator=gen).images[0]
|
|
|
21 |
if device in ("cuda", "mps"):
|
22 |
with torch.autocast(device):
|
23 |
return run()
|
24 |
+
return run()
|
|
|
25 |
|
26 |
+
# ========= QR Maker =========
|
27 |
def make_qr(url: str = "http://www.mybirdfire.com", size: int = 512, border: int = 2) -> Image.Image:
|
28 |
qr = qrcode.QRCode(
|
29 |
version=None,
|
30 |
+
error_correction=ERROR_CORRECT_H,
|
31 |
box_size=10,
|
32 |
border=border
|
33 |
)
|
|
|
36 |
img = qr.make_image(fill_color="black", back_color="white").convert("RGB")
|
37 |
return img.resize((size, size), resample=Image.NEAREST)
|
38 |
|
39 |
+
# ========= ControlNet Stylizer (prompt + QR) =========
|
40 |
+
# lazy-load to speed initial startup
|
41 |
+
_cn_loaded = {"pipe": None}
|
42 |
+
def _load_controlnet():
|
43 |
+
if _cn_loaded["pipe"] is None:
|
44 |
+
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
45 |
+
from controlnet_aux import CannyDetector
|
46 |
+
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=dtype)
|
47 |
+
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
48 |
+
"runwayml/stable-diffusion-v1-5",
|
49 |
+
controlnet=controlnet,
|
50 |
+
torch_dtype=dtype,
|
51 |
+
safety_checker=None
|
52 |
+
).to(device)
|
53 |
+
pipe.enable_attention_slicing()
|
54 |
+
pipe.enable_vae_slicing()
|
55 |
+
_cn_loaded["pipe"] = pipe
|
56 |
+
_cn_loaded["canny"] = CannyDetector()
|
57 |
+
return _cn_loaded["pipe"], _cn_loaded["canny"]
|
58 |
+
|
59 |
+
def stylize_qr(prompt: str, qr_image: Image.Image, steps: int, guidance: float, seed: int, canny_low: int, canny_high: int):
|
60 |
+
if qr_image is None:
|
61 |
+
raise gr.Error("Please provide a QR image (use the QR Maker tab first or upload one).")
|
62 |
+
pipe, canny = _load_controlnet()
|
63 |
+
# ensure 512x512 for speed/quality
|
64 |
+
qr_img = qr_image.convert("RGB").resize((512, 512), Image.NEAREST)
|
65 |
+
edges = canny(qr_img, low_threshold=int(canny_low), high_threshold=int(canny_high))
|
66 |
+
|
67 |
+
gen = torch.Generator(device=device).manual_seed(int(seed)) if int(seed) != 0 else None
|
68 |
+
def run():
|
69 |
+
return pipe(
|
70 |
+
prompt=str(prompt),
|
71 |
+
image=edges,
|
72 |
+
num_inference_steps=int(steps),
|
73 |
+
guidance_scale=float(guidance),
|
74 |
+
generator=gen
|
75 |
+
).images[0]
|
76 |
+
if device in ("cuda", "mps"):
|
77 |
+
with torch.autocast(device):
|
78 |
+
return run()
|
79 |
+
return run()
|
80 |
+
|
81 |
+
# ========= UI =========
|
82 |
with gr.Blocks() as demo:
|
83 |
+
gr.Markdown("## Stable Diffusion + QR Code + ControlNet (step by step)")
|
84 |
|
85 |
with gr.Tab("Stable Diffusion (prompt → image)"):
|
86 |
prompt = gr.Textbox(label="Prompt", value="A fantasy castle at sunset")
|
|
|
97 |
out_qr = gr.Image(label="QR Code", type="pil")
|
98 |
gr.Button("Generate QR").click(make_qr, [url, size, quiet], out_qr)
|
99 |
|
100 |
+
with gr.Tab("QR Stylizer (ControlNet)"):
|
101 |
+
s_prompt = gr.Textbox(label="Style Prompt", value="floral papercut style, high contrast, preserve sharp squares")
|
102 |
+
s_steps = gr.Slider(10, 50, value=30, label="Steps", step=1)
|
103 |
+
s_cfg = gr.Slider(1, 12, value=7.5, label="Guidance Scale", step=0.1)
|
104 |
+
s_seed = gr.Number(value=0, label="Seed (0 = random)", precision=0)
|
105 |
+
canny_l = gr.Slider(0, 255, value=100, step=1, label="Canny low")
|
106 |
+
canny_h = gr.Slider(0, 255, value=200, step=1, label="Canny high")
|
107 |
+
qr_in = gr.Image(label="QR Input (use output from QR Maker or upload)", type="pil")
|
108 |
+
out_styl = gr.Image(label="Stylized QR")
|
109 |
+
gr.Button("Stylize").click(stylize_qr, [s_prompt, qr_in, s_steps, s_cfg, s_seed, canny_l, canny_h], out_styl)
|
110 |
+
|
111 |
if __name__ == "__main__":
|
112 |
demo.launch()
|
requirements.txt
CHANGED
@@ -4,4 +4,5 @@ transformers
|
|
4 |
accelerate
|
5 |
safetensors
|
6 |
gradio
|
7 |
-
qrcode[pil]
|
|
|
|
4 |
accelerate
|
5 |
safetensors
|
6 |
gradio
|
7 |
+
qrcode[pil]
|
8 |
+
controlnet-aux
|