# import gradio as gr # import torch # from diffusers import StableDiffusionControlNetPipeline, ControlNetModel # from PIL import Image # import base64 # from io import BytesIO # # You can change these: # BASE_MODEL = "runwayml/stable-diffusion-v1-5" # CONTROLNET_ID = "lllyasviel/sd-controlnet-canny" # placeholder; change to a QR-focused ControlNet if you have one # device = "cuda" if torch.cuda.is_available() else "cpu" # controlnet = ControlNetModel.from_pretrained( # CONTROLNET_ID, torch_dtype=torch.float16 if device=="cuda" else torch.float32 # ) # pipe = StableDiffusionControlNetPipeline.from_pretrained( # BASE_MODEL, # controlnet=controlnet, # torch_dtype=torch.float16 if device=="cuda" else torch.float32, # safety_checker=None # ) # pipe.to(device) # def generate(prompt, control_image, guidance_scale=7.5, steps=30, seed=0): # print("API called:", type(control_image)) # generator = torch.Generator(device=device).manual_seed(int(seed)) if seed else None # img = pipe( # prompt=prompt, # image=control_image, # num_inference_steps=int(steps), # guidance_scale=float(guidance_scale), # generator=generator # ).images[0] # return img # with gr.Blocks() as demo: # gr.Markdown("# ControlNet Image Generator") # with gr.Row(): # prompt = gr.Textbox(label="Prompt", value="A futuristic poster, high detail") # seed = gr.Number(label="Seed (0=random)", value=0) # with gr.Row(): # control = gr.Image(type="pil", label="Control image (e.g., QR or edge map)") # steps = gr.Slider(10, 50, 30, step=1, label="Steps") # guidance = gr.Slider(1.0, 12.0, 7.5, step=0.1, label="Guidance scale") # out = gr.Image(label="Result") # btn = gr.Button("Generate") # btn.click(generate, [prompt, control, guidance, steps, seed], out) # # Enable simple API use # gr.Examples([], inputs=[prompt, control, guidance, steps, seed], outputs=out) # demo.launch() # app.py — minimal, API-stable echo server + Gradio UI import base64, io from typing import List, Any from PIL import Image import gradio as gr from fastapi import FastAPI from pydantic import BaseModel # ---- helpers ---- def data_url_to_pil(data_url: str) -> Image.Image: # expects "data:image/;base64,<...>" b64 = data_url.split(",", 1)[1] return Image.open(io.BytesIO(base64.b64decode(b64))).convert("RGB") def pil_to_data_url(img: Image.Image) -> str: buf = io.BytesIO() img.save(buf, format="PNG") return "data:image/png;base64," + base64.b64encode(buf.getvalue()).decode() # ---- your model fn (for now just echo control image) ---- def generate(prompt: str, control_image: Image.Image, guidance: float, steps: int, seed: int): # TODO: replace with ControlNet pipeline call return control_image # ---- Gradio UI (not required for API, but nice to see) ---- demo = gr.Interface( fn=generate, inputs=[ gr.Textbox(label="Prompt", value="High-quality artistic style, preserve structure"), gr.Image(type="pil", label="Control Image (PNG/JPG)"), gr.Slider(1, 12, 7.5, step=0.1, label="Guidance scale"), gr.Slider(10, 50, 30, step=1, label="Steps"), gr.Number(0, label="Seed"), ], outputs=gr.Image(label="Result"), ) # ---- FastAPI endpoint (stable path for Postman/Next.js) ---- app = FastAPI() class PredictIn(BaseModel): data: List[Any] # [prompt, controlImageBase64, guidance, steps, seed] @app.post("/api/predict/0") def predict(payload: PredictIn): prompt, control_b64, guidance, steps, seed = payload.data img = data_url_to_pil(control_b64) if isinstance(control_b64, str) else control_b64 out = generate(str(prompt), img, float(guidance), int(steps), int(seed)) return { "data": [ pil_to_data_url(out) ] } # mount Gradio at "/" app = gr.mount_gradio_app(app, demo, path="/")