import gradio as gr import torch from diffusers import StableDiffusionPipeline from PIL import Image import qrcode from qrcode.constants import ERROR_CORRECT_H # ========= device/dtype ========= device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" dtype = torch.float16 if device != "cpu" else torch.float32 # ========= SD 1.5 (prompt-only) ========= sd_pipe = StableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", torch_dtype=dtype ).to(device) def sd_generate(prompt, negative, steps, guidance, seed): gen = torch.Generator(device=device).manual_seed(int(seed)) if int(seed) != 0 else None def run(): return sd_pipe( prompt, negative_prompt=negative or "", num_inference_steps=int(steps), guidance_scale=float(guidance), generator=gen ).images[0] if device in ("cuda", "mps"): with torch.autocast(device): return run() return run() # ========= QR Maker ========= def make_qr(url: str = "http://www.mybirdfire.com", size: int = 512, border: int = 4) -> Image.Image: qr = qrcode.QRCode( version=None, error_correction=ERROR_CORRECT_H, # highest EC box_size=10, border=border ) qr.add_data(url.strip()) qr.make(fit=True) img = qr.make_image(fill_color="black", back_color="white").convert("RGB") return img.resize((size, size), resample=Image.NEAREST) # ========= SD1.5 ControlNet stylizer (canny + tile) ========= from diffusers import StableDiffusionControlNetPipeline, ControlNetModel from diffusers.schedulers.scheduling_euler_discrete import EulerDiscreteScheduler from controlnet_aux import CannyDetector BASE_15 = "runwayml/stable-diffusion-v1-5" CN_CANNY_15 = "lllyasviel/sd-controlnet-canny" CN_TILE_15 = "lllyasviel/control_v11f1e_sd15_tile" _cn = {"pipe": None} def _load_sd15_dual(): if _cn["pipe"] is None: canny = ControlNetModel.from_pretrained(CN_CANNY_15, torch_dtype=dtype) tile = ControlNetModel.from_pretrained(CN_TILE_15, torch_dtype=dtype) pipe = StableDiffusionControlNetPipeline.from_pretrained( BASE_15, controlnet=[canny, tile], torch_dtype=dtype, safety_checker=None ).to(device) pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config) # Sampler: Euler pipe.enable_attention_slicing() pipe.enable_vae_slicing() _cn["pipe"] = pipe _cn["canny_aux"] = CannyDetector() return _cn["pipe"], _cn["canny_aux"] NEG_DEFAULT = "lowres, low contrast, blurry, jpeg artifacts, worst quality, bad anatomy, extra digits" def stylize_qr_sd15(prompt: str, negative: str, steps: int, guidance: float, seed: int, canny_low: int, canny_high: int, border: int): # Make fresh QR each time qr_img = make_qr("http://www.mybirdfire.com", size=512, border=int(border)) pipe, canny = _load_sd15_dual() edges = canny(qr_img, low_threshold=int(canny_low), high_threshold=int(canny_high)) gen = torch.Generator(device=device).manual_seed(int(seed)) if int(seed) != 0 else None # Control weights (canny, tile). Tune if too “lego” or too artsy. cn_scales = [1.2, 0.6] def run(): return pipe( prompt=str(prompt), negative_prompt=negative or NEG_DEFAULT, image=[edges, qr_img], # canny first, tile second controlnet_conditioning_scale=cn_scales, num_inference_steps=int(steps), guidance_scale=float(guidance), generator=gen ).images[0] if device in ("cuda", "mps"): with torch.autocast(device): return run() return run() # ========= UI ========= with gr.Blocks() as demo: gr.Markdown("## Stable Diffusion + QR Code + ControlNet (SD1.5)") with gr.Tab("Stable Diffusion (prompt → image)"): prompt = gr.Textbox(label="Prompt", value="Sky, Moon, Bird, Blue, In the dark, Goddess, Sweet, Beautiful, Fantasy, Art, Anime") negative = gr.Textbox(label="Negative Prompt", value="lowres, bad anatomy, worst quality") steps = gr.Slider(10, 50, value=30, label="Steps", step=1) cfg = gr.Slider(1, 12, value=7.0, label="Guidance Scale", step=0.1) seed = gr.Number(value=0, label="Seed (0 = random)", precision=0) out_sd = gr.Image(label="Generated Image") gr.Button("Generate").click(sd_generate, [prompt, negative, steps, cfg, seed], out_sd) with gr.Tab("QR Maker (mybirdfire)"): url = gr.Textbox(label="URL/Text", value="http://www.mybirdfire.com") size = gr.Slider(256, 1024, value=512, step=64, label="Size (px)") quiet = gr.Slider(0, 8, value=4, step=1, label="Border (quiet zone)") out_qr = gr.Image(label="QR Code", type="pil") gr.Button("Generate QR").click(make_qr, [url, size, quiet], out_qr) with gr.Tab("QR Stylizer (SD1.5 canny + tile, Euler)"): s_prompt = gr.Textbox(label="Style Prompt", value="Sky, Moon, Bird, Blue, In the dark, Goddess, Sweet, Beautiful, Fantasy, Art, Anime") s_negative = gr.Textbox(label="Negative Prompt", value=NEG_DEFAULT) s_steps = gr.Slider(10, 50, value=28, label="Steps", step=1) s_cfg = gr.Slider(1, 12, value=7.0, label="CFG", step=0.1) s_seed = gr.Number(value=1470713301, label="Seed", precision=0) canny_l = gr.Slider(0, 255, value=80, step=1, label="Canny low") canny_h = gr.Slider(0, 255, value=160, step=1, label="Canny high") s_border = gr.Slider(2, 10, value=6, step=1, label="QR border") out_styl = gr.Image(label="Stylized QR") gr.Button("Stylize").click( stylize_qr_sd15, [s_prompt, s_negative, s_steps, s_cfg, s_seed, canny_l, canny_h, s_border], out_styl ) if __name__ == "__main__": demo.launch()