Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| from huggingface_hub import HfApi | |
| import pandas as pd | |
| import matplotlib.pyplot as plt | |
| import seaborn as sns | |
| from datetime import datetime | |
| from concurrent.futures import ThreadPoolExecutor, as_completed | |
| from functools import lru_cache | |
| import time | |
| import requests | |
| from collections import Counter | |
| st.set_page_config(page_title="HF Contributions", layout="wide", initial_sidebar_state="expanded") | |
| # Set custom sidebar width - UPDATED to 40% of the screen | |
| st.markdown(""" | |
| <style> | |
| [data-testid="stSidebar"] { | |
| min-width: 40vw !important; | |
| max-width: 40vw !important; | |
| } | |
| </style> | |
| """, unsafe_allow_html=True) | |
| api = HfApi() | |
| # Cache for API responses | |
| def cached_repo_info(repo_id, repo_type): | |
| return api.repo_info(repo_id=repo_id, repo_type=repo_type) | |
| def cached_list_commits(repo_id, repo_type): | |
| return list(api.list_repo_commits(repo_id=repo_id, repo_type=repo_type)) | |
| def cached_list_items(username, kind): | |
| if kind == "model": | |
| return list(api.list_models(author=username)) | |
| elif kind == "dataset": | |
| return list(api.list_datasets(author=username)) | |
| elif kind == "space": | |
| return list(api.list_spaces(author=username)) | |
| return [] | |
| # Function to fetch trending accounts and create stats | |
| def get_trending_accounts(limit=100): | |
| try: | |
| trending_data = {"spaces": [], "models": []} | |
| # Get spaces for stats calculation | |
| spaces_response = requests.get("https://huggingface.co/api/spaces", | |
| params={"limit": 10000}, | |
| timeout=30) | |
| # Get models for stats calculation | |
| models_response = requests.get("https://huggingface.co/api/models", | |
| params={"limit": 10000}, | |
| timeout=30) | |
| # Process spaces data | |
| spaces_owners = [] | |
| if spaces_response.status_code == 200: | |
| spaces = spaces_response.json() | |
| # Count spaces by owner | |
| owner_counts_spaces = {} | |
| for space in spaces: | |
| if '/' in space.get('id', ''): | |
| owner, _ = space.get('id', '').split('/', 1) | |
| else: | |
| owner = space.get('owner', '') | |
| if owner != 'None': | |
| owner_counts_spaces[owner] = owner_counts_spaces.get(owner, 0) + 1 | |
| # Get top owners by count for spaces | |
| top_owners_spaces = sorted(owner_counts_spaces.items(), key=lambda x: x[1], reverse=True)[:limit] | |
| trending_data["spaces"] = top_owners_spaces | |
| spaces_owners = [owner for owner, _ in top_owners_spaces] | |
| # Process models data | |
| models_owners = [] | |
| if models_response.status_code == 200: | |
| models = models_response.json() | |
| # Count models by owner | |
| owner_counts_models = {} | |
| for model in models: | |
| if '/' in model.get('id', ''): | |
| owner, _ = model.get('id', '').split('/', 1) | |
| else: | |
| owner = model.get('owner', '') | |
| if owner != 'None': | |
| owner_counts_models[owner] = owner_counts_models.get(owner, 0) + 1 | |
| # Get top owners by count for models | |
| top_owners_models = sorted(owner_counts_models.items(), key=lambda x: x[1], reverse=True)[:limit] | |
| trending_data["models"] = top_owners_models | |
| models_owners = [owner for owner, _ in top_owners_models] | |
| # Combine rankings for overall trending based on appearance in both lists | |
| combined_score = {} | |
| for i, owner in enumerate(spaces_owners): | |
| if owner not in combined_score: | |
| combined_score[owner] = 0 | |
| combined_score[owner] += (limit - i) # Higher rank gives more points | |
| for i, owner in enumerate(models_owners): | |
| if owner not in combined_score: | |
| combined_score[owner] = 0 | |
| combined_score[owner] += (limit - i) # Higher rank gives more points | |
| # Sort by combined score | |
| sorted_combined = sorted(combined_score.items(), key=lambda x: x[1], reverse=True)[:limit] | |
| trending_authors = [owner for owner, _ in sorted_combined] | |
| return trending_authors, trending_data["spaces"], trending_data["models"] | |
| except Exception as e: | |
| st.error(f"Error fetching trending accounts: {str(e)}") | |
| fallback_authors = ["ritvik77", "facebook", "google", "stabilityai", "Salesforce", "tiiuae", "bigscience"] | |
| return fallback_authors, [(author, 0) for author in fallback_authors], [(author, 0) for author in fallback_authors] | |
| # Rate limiting | |
| class RateLimiter: | |
| def __init__(self, calls_per_second=10): | |
| self.calls_per_second = calls_per_second | |
| self.last_call = 0 | |
| def wait(self): | |
| current_time = time.time() | |
| time_since_last_call = current_time - self.last_call | |
| if time_since_last_call < (1.0 / self.calls_per_second): | |
| time.sleep((1.0 / self.calls_per_second) - time_since_last_call) | |
| self.last_call = time.time() | |
| rate_limiter = RateLimiter() | |
| # Function to fetch commits for a repository (optimized) | |
| def fetch_commits_for_repo(repo_id, repo_type, username, selected_year): | |
| try: | |
| rate_limiter.wait() | |
| # Skip private/gated repos upfront | |
| repo_info = cached_repo_info(repo_id, repo_type) | |
| if repo_info.private or (hasattr(repo_info, 'gated') and repo_info.gated): | |
| return [], [] | |
| # Get initial commit date | |
| initial_commit_date = pd.to_datetime(repo_info.created_at).tz_localize(None).date() | |
| commit_dates = [] | |
| commit_count = 0 | |
| # Add initial commit if it's from the selected year | |
| if initial_commit_date.year == selected_year: | |
| commit_dates.append(initial_commit_date) | |
| commit_count += 1 | |
| # Get all commits | |
| commits = cached_list_commits(repo_id, repo_type) | |
| for commit in commits: | |
| commit_date = pd.to_datetime(commit.created_at).tz_localize(None).date() | |
| if commit_date.year == selected_year: | |
| commit_dates.append(commit_date) | |
| commit_count += 1 | |
| return commit_dates, commit_count | |
| except Exception: | |
| return [], 0 | |
| # Function to get commit events for a user (optimized) | |
| def get_commit_events(username, kind=None, selected_year=None): | |
| commit_dates = [] | |
| items_with_type = [] | |
| kinds = [kind] if kind else ["model", "dataset", "space"] | |
| for k in kinds: | |
| try: | |
| items = cached_list_items(username, k) | |
| items_with_type.extend((item, k) for item in items) | |
| repo_ids = [item.id for item in items] | |
| # Optimized parallel fetch with chunking | |
| chunk_size = 5 # Process 5 repos at a time | |
| for i in range(0, len(repo_ids), chunk_size): | |
| chunk = repo_ids[i:i + chunk_size] | |
| with ThreadPoolExecutor(max_workers=min(5, len(chunk))) as executor: | |
| future_to_repo = { | |
| executor.submit(fetch_commits_for_repo, repo_id, k, username, selected_year): repo_id | |
| for repo_id in chunk | |
| } | |
| for future in as_completed(future_to_repo): | |
| repo_commits, repo_count = future.result() | |
| if repo_commits: # Only extend if we got commits | |
| commit_dates.extend(repo_commits) | |
| except Exception as e: | |
| st.warning(f"Error fetching {k}s for {username}: {str(e)}") | |
| # Create DataFrame with all commits | |
| df = pd.DataFrame(commit_dates, columns=["date"]) | |
| if not df.empty: | |
| df = df.drop_duplicates() # Remove any duplicate dates | |
| return df, items_with_type | |
| # Calendar heatmap function (optimized) | |
| def make_calendar_heatmap(df, title, year): | |
| if df.empty: | |
| st.info(f"No {title.lower()} found for {year}.") | |
| return | |
| # Optimize DataFrame operations | |
| df["count"] = 1 | |
| df = df.groupby("date", as_index=False).sum() | |
| df["date"] = pd.to_datetime(df["date"]) | |
| # Create date range more efficiently | |
| start = pd.Timestamp(f"{year}-01-01") | |
| end = pd.Timestamp(f"{year}-12-31") | |
| all_days = pd.date_range(start=start, end=end) | |
| # Optimize DataFrame creation and merging | |
| heatmap_data = pd.DataFrame({"date": all_days, "count": 0}) | |
| heatmap_data = heatmap_data.merge(df, on="date", how="left", suffixes=("", "_y")) | |
| heatmap_data["count"] = heatmap_data["count_y"].fillna(0) | |
| heatmap_data = heatmap_data.drop("count_y", axis=1) | |
| # Calculate week and day of week more efficiently | |
| heatmap_data["dow"] = heatmap_data["date"].dt.dayofweek | |
| heatmap_data["week"] = (heatmap_data["date"] - start).dt.days // 7 | |
| # Create pivot table more efficiently | |
| pivot = heatmap_data.pivot(index="dow", columns="week", values="count").fillna(0) | |
| # Optimize month labels calculation | |
| month_labels = pd.date_range(start, end, freq="MS").strftime("%b") | |
| month_positions = pd.date_range(start, end, freq="MS").map(lambda x: (x - start).days // 7) | |
| # Create custom colormap with specific boundaries | |
| from matplotlib.colors import ListedColormap, BoundaryNorm | |
| colors = ['#ebedf0', '#9be9a8', '#40c463', '#30a14e', '#216e39'] # GitHub-style green colors | |
| bounds = [0, 1, 3, 11, 31, float('inf')] # Boundaries for color transitions | |
| cmap = ListedColormap(colors) | |
| norm = BoundaryNorm(bounds, cmap.N) | |
| # Create plot more efficiently | |
| fig, ax = plt.subplots(figsize=(12, 1.2)) | |
| # Convert pivot values to integers to ensure proper color mapping | |
| pivot_int = pivot.astype(int) | |
| # Create heatmap with explicit vmin and vmax | |
| sns.heatmap(pivot_int, ax=ax, cmap=cmap, norm=norm, linewidths=0.5, linecolor="white", | |
| square=True, cbar=False, yticklabels=["M", "T", "W", "T", "F", "S", "S"]) | |
| ax.set_title(f"{title}", fontsize=12, pad=10) | |
| ax.set_xlabel("") | |
| ax.set_ylabel("") | |
| ax.set_xticks(month_positions) | |
| ax.set_xticklabels(month_labels, fontsize=8) | |
| ax.set_yticklabels(ax.get_yticklabels(), rotation=0, fontsize=8) | |
| st.pyplot(fig) | |
| # Fetch trending accounts with a loading spinner (do this once at the beginning) | |
| with st.spinner("Loading trending accounts..."): | |
| trending_accounts, top_owners_spaces, top_owners_models = get_trending_accounts(limit=100) | |
| # Sidebar | |
| with st.sidebar: | |
| st.title("π€ Contributor") | |
| # Create tabs for Spaces and Models rankings - ONLY SHOWING FIRST TWO TABS | |
| tab1, tab2 = st.tabs([ | |
| "Top 100 Overall Contributors", | |
| "Top 100 by Spaces & Models" | |
| ]) | |
| with tab1: | |
| # Show combined trending accounts list | |
| st.subheader("π₯ Top 100 Overall Contributors") | |
| # Display the top 100 accounts list | |
| st.markdown("### Combined Contributors Ranking") | |
| # Create a data frame for the table | |
| if trending_accounts: | |
| # Create a mapping from username to Spaces and Models rankings | |
| spaces_rank = {owner: idx+1 for idx, (owner, _) in enumerate(top_owners_spaces)} | |
| models_rank = {owner: idx+1 for idx, (owner, _) in enumerate(top_owners_models)} | |
| # Create the overall ranking dataframe | |
| overall_data = [] | |
| for idx, username in enumerate(trending_accounts[:100]): | |
| # Use strings for all rankings to avoid type conversion issues | |
| spaces_position = str(spaces_rank.get(username, "-")) | |
| models_position = str(models_rank.get(username, "-")) | |
| overall_data.append([username, spaces_position, models_position]) | |
| ranking_data_overall = pd.DataFrame( | |
| overall_data, | |
| columns=["Contributor", "Spaces Rank", "Models Rank"] | |
| ) | |
| ranking_data_overall.index = ranking_data_overall.index + 1 # Start index from 1 for ranking | |
| st.dataframe( | |
| ranking_data_overall, | |
| column_config={ | |
| "Contributor": st.column_config.TextColumn("Contributor"), | |
| "Spaces Rank": st.column_config.TextColumn("Spaces Rank (top 100)"), | |
| "Models Rank": st.column_config.TextColumn("Models Rank (top 100)") | |
| }, | |
| use_container_width=True, | |
| hide_index=False | |
| ) | |
| with tab2: | |
| # Show trending accounts list by Spaces | |
| st.subheader("π Top 100 by Spaces & Models") | |
| # Display the top 100 accounts list | |
| st.markdown("### Spaces Contributors Ranking") | |
| # Create a data frame for the table | |
| if top_owners_spaces: | |
| ranking_data_spaces = pd.DataFrame(top_owners_spaces[:100], columns=["Contributor", "Spaces Count"]) | |
| ranking_data_spaces.index = ranking_data_spaces.index + 1 # Start index from 1 for ranking | |
| st.dataframe( | |
| ranking_data_spaces, | |
| column_config={ | |
| "Contributor": st.column_config.TextColumn("Contributor"), | |
| "Spaces Count": st.column_config.NumberColumn("Spaces Count (based on top 500 spaces)", format="%d") | |
| }, | |
| use_container_width=True, | |
| hide_index=False | |
| ) | |
| # Add stats expander with visualization | |
| with st.expander("View Top 30 Spaces Contributors Chart"): | |
| # Create a bar chart for top 30 contributors | |
| if top_owners_spaces: | |
| chart_data = pd.DataFrame(top_owners_spaces[:30], columns=["Owner", "Spaces Count"]) | |
| fig, ax = plt.subplots(figsize=(10, 8)) | |
| bars = ax.barh(chart_data["Owner"], chart_data["Spaces Count"]) | |
| # Add color gradient to bars | |
| for i, bar in enumerate(bars): | |
| bar.set_color(plt.cm.viridis(i/len(bars))) | |
| ax.set_title("Top 30 Contributors by Number of Spaces") | |
| ax.set_xlabel("Number of Spaces") | |
| plt.tight_layout() | |
| st.pyplot(fig) | |
| # Display the top 100 Models accounts list (ADDED SECTION) | |
| st.markdown("### Models Contributors Ranking") | |
| # Create a data frame for the Models table | |
| if top_owners_models: | |
| ranking_data_models = pd.DataFrame(top_owners_models[:100], columns=["Contributor", "Models Count"]) | |
| ranking_data_models.index = ranking_data_models.index + 1 # Start index from 1 for ranking | |
| st.dataframe( | |
| ranking_data_models, | |
| column_config={ | |
| "Contributor": st.column_config.TextColumn("Contributor"), | |
| "Models Count": st.column_config.NumberColumn("Models Count (based on top 500 models)", format="%d") | |
| }, | |
| use_container_width=True, | |
| hide_index=False | |
| ) | |
| # Add stats expander with visualization for Models (ADDED SECTION) | |
| with st.expander("View Top 30 Models Contributors Chart"): | |
| # Create a bar chart for top 30 models contributors | |
| if top_owners_models: | |
| chart_data = pd.DataFrame(top_owners_models[:30], columns=["Owner", "Models Count"]) | |
| fig, ax = plt.subplots(figsize=(10, 8)) | |
| bars = ax.barh(chart_data["Owner"], chart_data["Models Count"]) | |
| # Add color gradient to bars | |
| for i, bar in enumerate(bars): | |
| bar.set_color(plt.cm.plasma(i/len(bars))) # Using a different colormap for distinction | |
| ax.set_title("Top 30 Contributors by Number of Models") | |
| ax.set_xlabel("Number of Models") | |
| plt.tight_layout() | |
| st.pyplot(fig) | |
| # Display trending accounts selection dropdown | |
| st.subheader("Select Contributor") | |
| selected_trending = st.selectbox( | |
| "Select trending account", | |
| options=trending_accounts[:100], # Limit to top 100 | |
| index=0 if trending_accounts else None, | |
| key="trending_selectbox" | |
| ) | |
| # Custom account input option | |
| st.markdown("<div style='text-align: center; margin: 10px 0;'>OR</div>", unsafe_allow_html=True) | |
| custom = st.text_input("Enter username/org", label_visibility="collapsed") | |
| # Set username based on selection or custom input | |
| if custom.strip(): | |
| username = custom.strip() | |
| elif selected_trending: | |
| username = selected_trending | |
| else: | |
| username = "facebook" # Default fallback | |
| # Year selection | |
| st.subheader("ποΈ Time Period") | |
| year_options = list(range(datetime.now().year, 2017, -1)) | |
| selected_year = st.selectbox("Select Year", options=year_options) | |
| # Additional options for customization | |
| st.subheader("βοΈ Display Options") | |
| show_models = st.checkbox("Show Models", value=True) | |
| show_datasets = st.checkbox("Show Datasets", value=True) | |
| show_spaces = st.checkbox("Show Spaces", value=True) | |
| # Main Content | |
| st.title("π€ Hugging Face Contributions") | |
| if username: | |
| with st.spinner(f"Fetching commit data for {username}..."): | |
| # Display contributor rank if in top 30 | |
| if username in trending_accounts[:100]: | |
| rank = trending_accounts.index(username) + 1 | |
| st.success(f"π {username} is ranked #{rank} in the top trending contributors!") | |
| # Find user in spaces ranking | |
| spaces_rank = None | |
| for i, (owner, count) in enumerate(top_owners_spaces): | |
| if owner == username: | |
| spaces_rank = i+1 | |
| st.info(f"π Spaces Ranking: #{spaces_rank} with {count} spaces") | |
| break | |
| # Find user in models ranking | |
| models_rank = None | |
| for i, (owner, count) in enumerate(top_owners_models): | |
| if owner == username: | |
| models_rank = i+1 | |
| st.info(f"π§ Models Ranking: #{models_rank} with {count} models") | |
| break | |
| # Display combined ranking info | |
| combined_info = [] | |
| if spaces_rank and spaces_rank <= 100: | |
| combined_info.append(f"Spaces: #{spaces_rank}") | |
| if models_rank and models_rank <= 100: | |
| combined_info.append(f"Models: #{models_rank}") | |
| if combined_info: | |
| st.success(f"Combined Rankings (Top 100): {', '.join(combined_info)}") | |
| # Create a dictionary to store commits by type | |
| commits_by_type = {} | |
| commit_counts_by_type = {} | |
| # Determine which types to fetch based on checkboxes | |
| types_to_fetch = [] | |
| if show_models: | |
| types_to_fetch.append("model") | |
| if show_datasets: | |
| types_to_fetch.append("dataset") | |
| if show_spaces: | |
| types_to_fetch.append("space") | |
| if not types_to_fetch: | |
| st.warning("Please select at least one content type to display (Models, Datasets, or Spaces)") | |
| st.stop() | |
| # Fetch commits for each selected type | |
| for kind in types_to_fetch: | |
| try: | |
| items = cached_list_items(username, kind) | |
| repo_ids = [item.id for item in items] | |
| st.info(f"Found {len(repo_ids)} {kind}s for {username}") | |
| # Process repos in chunks | |
| chunk_size = 5 | |
| total_commits = 0 | |
| all_commit_dates = [] | |
| progress_bar = st.progress(0) | |
| for i in range(0, len(repo_ids), chunk_size): | |
| chunk = repo_ids[i:i + chunk_size] | |
| with ThreadPoolExecutor(max_workers=min(5, len(chunk))) as executor: | |
| future_to_repo = { | |
| executor.submit(fetch_commits_for_repo, repo_id, kind, username, selected_year): repo_id | |
| for repo_id in chunk | |
| } | |
| for future in as_completed(future_to_repo): | |
| repo_commits, repo_count = future.result() | |
| if repo_commits: | |
| all_commit_dates.extend(repo_commits) | |
| total_commits += repo_count | |
| # Update progress | |
| progress = min(1.0, (i + len(chunk)) / max(1, len(repo_ids))) | |
| progress_bar.progress(progress) | |
| # Complete progress | |
| progress_bar.progress(1.0) | |
| commits_by_type[kind] = all_commit_dates | |
| commit_counts_by_type[kind] = total_commits | |
| except Exception as e: | |
| st.warning(f"Error fetching {kind}s for {username}: {str(e)}") | |
| commits_by_type[kind] = [] | |
| commit_counts_by_type[kind] = 0 | |
| # Calculate total commits across all types | |
| total_commits = sum(commit_counts_by_type.values()) | |
| st.subheader(f"{username}'s Activity in {selected_year}") | |
| # Profile information | |
| profile_col1, profile_col2 = st.columns([1, 3]) | |
| with profile_col1: | |
| # Try to get avatar | |
| try: | |
| avatar_url = f"https://huggingface.co/avatars/{username}" | |
| st.image(avatar_url, width=150) | |
| except: | |
| st.info("No profile image available") | |
| with profile_col2: | |
| st.metric("Total Commits", total_commits) | |
| # Show contributor rank if in top owners | |
| for owner, count in top_owners_spaces: | |
| if owner.lower() == username.lower(): | |
| st.metric("Spaces Count", count) | |
| break | |
| st.markdown(f"[View Profile on Hugging Face](https://huggingface.co/{username})") | |
| # Create DataFrame for all commits | |
| all_commits = [] | |
| for commits in commits_by_type.values(): | |
| all_commits.extend(commits) | |
| all_df = pd.DataFrame(all_commits, columns=["date"]) | |
| if not all_df.empty: | |
| all_df = all_df.drop_duplicates() # Remove any duplicate dates | |
| make_calendar_heatmap(all_df, "All Commits", selected_year) | |
| # Add followers chart section | |
| st.subheader(f"π₯ Follower Evolution for {username}") | |
| followers_container = st.container() | |
| with followers_container: | |
| # Create iframe to embed the external follower visualization | |
| iframe_html = f""" | |
| <iframe | |
| src="/index.html?username={username}" | |
| width="100%" | |
| height="500px" | |
| style="border:none;box-shadow:0px 0px 10px rgba(0,0,0,0.1);border-radius:10px;" | |
| allowfullscreen> | |
| </iframe> | |
| """ | |
| st.markdown(iframe_html, unsafe_allow_html=True) | |
| st.caption("Follower evolution data from Hugging Face. The chart displays how followers have changed over time.") | |
| # Metrics and heatmaps for each selected type | |
| cols = st.columns(len(types_to_fetch)) if types_to_fetch else st.columns(1) | |
| for i, (kind, emoji, label) in enumerate([ | |
| ("model", "π§ ", "Models"), | |
| ("dataset", "π¦", "Datasets"), | |
| ("space", "π", "Spaces") | |
| ]): | |
| if kind in types_to_fetch: | |
| with cols[types_to_fetch.index(kind)]: | |
| try: | |
| total = len(cached_list_items(username, kind)) | |
| commits = commits_by_type.get(kind, []) | |
| commit_count = commit_counts_by_type.get(kind, 0) | |
| df_kind = pd.DataFrame(commits, columns=["date"]) | |
| if not df_kind.empty: | |
| df_kind = df_kind.drop_duplicates() # Remove any duplicate dates | |
| st.metric(f"{emoji} {label}", total) | |
| st.metric(f"Commits in {selected_year}", commit_count) | |
| make_calendar_heatmap(df_kind, f"{label} Commits", selected_year) | |
| except Exception as e: | |
| st.warning(f"Error processing {label}: {str(e)}") | |
| st.metric(f"{emoji} {label}", 0) | |
| st.metric(f"Commits in {selected_year}", 0) | |
| make_calendar_heatmap(pd.DataFrame(), f"{label} Commits", selected_year) | |
| else: | |
| st.info("Please select an account from the sidebar to view contributions.") |