File size: 27,067 Bytes
ae20fe2
 
 
 
 
 
8289369
 
 
 
 
ae20fe2
 
 
 
8289369
ae20fe2
 
 
 
 
 
 
 
 
 
8289369
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a751c2
 
 
 
 
 
 
 
 
 
 
 
 
 
8289369
5a751c2
 
 
 
 
 
 
 
 
8289369
5a751c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8289369
5a751c2
 
 
 
 
8289369
 
 
 
5a751c2
 
8289369
5a751c2
 
 
 
8289369
 
 
 
 
5a751c2
 
 
 
8289369
 
5a751c2
8289369
5a751c2
 
 
 
8289369
5a751c2
 
 
8289369
5a751c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8289369
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d709cdc
8289369
 
 
b88a2d6
8289369
 
 
 
 
 
 
 
 
 
 
 
 
 
 
642af4d
8289369
 
 
 
 
 
 
 
 
 
 
 
 
ae20fe2
 
 
 
 
 
 
 
 
 
8289369
 
 
 
 
 
642af4d
8289369
 
 
 
 
 
 
 
5a751c2
8289369
 
5a751c2
8289369
 
 
 
 
 
5a751c2
642af4d
 
8289369
5a751c2
 
 
8289369
5a751c2
 
8289369
 
 
 
 
 
 
 
 
 
 
 
 
 
642af4d
8289369
 
 
 
 
 
 
 
 
 
 
 
 
 
ae20fe2
 
 
 
 
 
 
8289369
 
 
 
5a751c2
8289369
 
5a751c2
8289369
 
 
 
5a751c2
8289369
 
5a751c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8289369
 
 
 
 
 
 
 
 
 
 
 
 
5a751c2
8289369
 
ae20fe2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a751c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8289369
ae20fe2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8289369
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
"""
LLM基础类定义
提供聊天完成功能的抽象基类和Transformers实现
"""

import logging
import time
import uuid
import torch
from typing import List, Dict, Optional, Union, Literal
from abc import ABC, abstractmethod
import os

# 禁用 PyTorch 编译以避免在 Gradio Spaces 中的兼容性问题
os.environ["PYTORCH_DISABLE_DYNAMO"] = "1"

# 如果 torch._dynamo 可用,禁用它
try:
    import torch._dynamo
    torch._dynamo.config.disable = True
    torch._dynamo.config.suppress_errors = True
except ImportError:
    pass

# 配置日志
logger = logging.getLogger("llm")

class BaseChatCompletion(ABC):
    """Gemma 聊天完成的基类,包含公共功能"""
    
    def __init__(self, model_name: str):
        self.model_name = model_name
    
    @abstractmethod
    def _load_model_and_tokenizer(self):
        """加载模型和分词器的抽象方法,由子类实现"""
        pass
    
    @abstractmethod
    def _generate_response(self, prompt_str: str, temperature: float, max_tokens: int, top_p: float, **kwargs) -> str:
        """生成响应的抽象方法,由子类实现"""
        pass

    def _format_messages_for_gemma(self, messages: List[Dict[str, str]]) -> str:
        try:
            # 确保消息格式正确
            formatted_messages = []
            for msg in messages:
                if msg.get("role") and msg.get("content"):
                    formatted_messages.append({
                        "role": msg["role"],
                        "content": msg["content"]
                    })
            
            # 使用官方聊天模板
            prompt_str = self.tokenizer.apply_chat_template(
                formatted_messages, 
                tokenize=False, 
                add_generation_prompt=True
            )
            
            # 调试信息
            print(f"使用官方聊天模板格式化成功,长度: {len(prompt_str)}")
            return prompt_str
            
        except Exception as e:
            print(f"官方聊天模板失败: {e},使用手动格式化")
            
            # 手动格式化 - 改进版本
            prompt_parts = []
            
            # 处理系统消息 - Gemma 3 的正确处理方式
            system_messages = [msg for msg in messages if msg.get("role") == "system"]
            other_messages = [msg for msg in messages if msg.get("role") != "system"]
            
            # 对于 Gemma,系统消息通常需要特殊处理
            if system_messages:
                # 将系统消息作为第一个用户消息的前缀
                system_content = "\n".join([msg["content"] for msg in system_messages])
                if other_messages and other_messages[0].get("role") == "user":
                    # 将系统提示合并到第一个用户消息中
                    first_user_msg = other_messages[0]
                    combined_content = f"{system_content}\n\n{first_user_msg['content']}"
                    other_messages[0] = {"role": "user", "content": combined_content}
                else:
                    # 如果没有用户消息,创建一个包含系统提示的用户消息
                    other_messages.insert(0, {"role": "user", "content": system_content})
            
            # 格式化其他消息
            for message in other_messages:
                role = message.get("role")
                content = message.get("content", "").strip()
                
                if not content:
                    continue
                    
                if role == "user":
                    prompt_parts.append(f"<start_of_turn>user\n{content}<end_of_turn>")
                elif role == "assistant":
                    prompt_parts.append(f"<start_of_turn>model\n{content}<end_of_turn>")
            
            # 添加生成提示
            prompt_parts.append("<start_of_turn>model")
            
            formatted_prompt = "\n".join(prompt_parts)
            print(f"手动格式化完成,长度: {len(formatted_prompt)}")
            return formatted_prompt

    def _post_process_response(self, response_text: str, prompt_str: str) -> str:
        """
        后处理生成的响应文本,清理提示和特殊标记
        """
        print(f"原始响应长度: {len(response_text)}")
        print(f"原始响应前100字符: {response_text[:100]}")
        
        # 如果模型输出包含提示,则移除提示部分
        if response_text.startswith(prompt_str):
            assistant_message_content = response_text[len(prompt_str):].strip()
            print("检测到响应包含提示,已移除提示部分")
        else:
            # 尝试找到最后一个 "<start_of_turn>model" 标记
            model_start_marker = "<start_of_turn>model"
            if model_start_marker in response_text:
                parts = response_text.split(model_start_marker)
                assistant_message_content = parts[-1].strip()
                print("通过 <start_of_turn>model 标记分割响应")
            else:
                # 如果没有找到标记,使用整个响应
                assistant_message_content = response_text.strip()
                print("未找到特殊标记,使用完整响应")
        
        # 清理结束标记
        end_markers = ["<end_of_turn>", "<|endoftext|>", "</s>"]
        for marker in end_markers:
            if marker in assistant_message_content:
                assistant_message_content = assistant_message_content.split(marker)[0].strip()
                print(f"移除结束标记: {marker}")
        
        # 特殊处理:如果响应看起来像 JSON,尝试提取 JSON 部分
        if "{" in assistant_message_content and "}" in assistant_message_content:
            # 尝试提取 JSON 对象
            first_brace = assistant_message_content.find("{")
            last_brace = assistant_message_content.rfind("}")
            if first_brace != -1 and last_brace != -1 and last_brace > first_brace:
                potential_json = assistant_message_content[first_brace:last_brace + 1]
                # 验证是否为有效 JSON
                try:
                    import json
                    json.loads(potential_json)
                    assistant_message_content = potential_json
                    print("提取并验证了 JSON 响应")
                except json.JSONDecodeError:
                    print("JSON 验证失败,保持原始响应")
                    # 如果JSON验证失败,尝试清理常见的非JSON内容
                    lines = assistant_message_content.split('\n')
                    cleaned_lines = []
                    json_started = False
                    
                    for line in lines:
                        line = line.strip()
                        # 跳过明显的解释性文本
                        if any(phrase in line.lower() for phrase in [
                            'here is', 'here\'s', 'based on', 'analysis', 'looking at',
                            'the json', 'response:', 'result:', 'output:', 'answer:',
                            'i can see', 'it appears', 'according to'
                        ]):
                            continue
                        
                        # 如果遇到JSON开始,标记开始
                        if '{' in line:
                            json_started = True
                        
                        # 如果已经开始JSON,保留所有内容
                        if json_started:
                            cleaned_lines.append(line)
                        
                        # 如果遇到JSON结束,停止
                        if '}' in line and json_started:
                            break
                    
                    if cleaned_lines:
                        assistant_message_content = '\n'.join(cleaned_lines)
                        print("清理了非JSON解释性内容")
        
        # 最终清理:移除常见的解释性前缀和后缀
        prefixes_to_remove = [
            "Here is the JSON:", "Here's the JSON:", "The JSON response is:",
            "Based on the analysis:", "Looking at the information:",
            "Here is my analysis:", "The result is:", "My response:",
            "Output:", "Answer:", "Result:"
        ]
        
        for prefix in prefixes_to_remove:
            if assistant_message_content.lower().startswith(prefix.lower()):
                assistant_message_content = assistant_message_content[len(prefix):].strip()
                print(f"移除前缀: {prefix}")
                break
        
        # 移除常见的后缀解释
        suffixes_to_remove = [
            "This JSON object maps each speaker ID to their identified name or role.",
            "Each speaker has been identified based on the provided information.",
            "The identification is based on the dialogue samples and metadata."
        ]
        
        for suffix in suffixes_to_remove:
            if assistant_message_content.lower().endswith(suffix.lower()):
                assistant_message_content = assistant_message_content[:-len(suffix)].strip()
                print(f"移除后缀: {suffix}")
                break
        
        # 最终清理
        assistant_message_content = assistant_message_content.strip()
        
        print(f"处理后响应长度: {len(assistant_message_content)}")
        print(f"处理后响应前100字符: {assistant_message_content[:100]}")
        
        return assistant_message_content

    def _calculate_tokens(self, prompt_str: str, assistant_message_content: str) -> Dict[str, int]:
        """
        计算token数量(近似值,因为确切的OpenAI分词可能不同)
        """
        # 对于提示token,我们对输入到模型的字符串进行分词。
        # 对于完成token,我们对生成的助手消息进行分词。
        prompt_tokens = len(self.tokenizer.encode(prompt_str))
        completion_tokens = len(self.tokenizer.encode(assistant_message_content))
        total_tokens = prompt_tokens + completion_tokens
        
        return {
            "prompt_tokens": prompt_tokens,
            "completion_tokens": completion_tokens,
            "total_tokens": total_tokens
        }

    def _build_chat_completion_response(self, assistant_message_content: str, token_usage: Dict[str, int]) -> Dict:
        """
        构建模仿OpenAI结构的响应对象
        基于: https://platform.openai.com/docs/api-reference/chat/object
        """
        # 获取完成的当前时间戳
        created_timestamp = int(time.time())
        completion_id = f"chatcmpl-{uuid.uuid4().hex}" # 创建一个唯一的ID

        return {
            "id": completion_id,
            "object": "chat.completion",
            "created": created_timestamp,
            "model": self.model_name, # 报告我们使用的模型名称
            "choices": [
                {
                    "index": 0,
                    "message": {
                        "role": "assistant",
                        "content": assistant_message_content,
                    },
                    "finish_reason": "stop", # 假定为 "stop"
                }
            ],
            "usage": token_usage,
        }

    def create(
        self,
        messages: List[Dict[str, str]],
        temperature: float = 0.7,
        max_tokens: int = 2048,
        top_p: float = 1.0,
        **kwargs,
    ):
        """
        创建聊天完成响应。
        模仿OpenAI的ChatCompletion.create方法。
        """
        # 为Gemma格式化消息
        prompt_str = self._format_messages_for_gemma(messages)

        # 生成响应(由子类实现)
        response_text = self._generate_response(prompt_str, temperature, max_tokens, top_p, **kwargs)
        
        # 后处理响应
        assistant_message_content = self._post_process_response(response_text, prompt_str)
        
        # 计算token使用量
        token_usage = self._calculate_tokens(prompt_str, assistant_message_content)
        
        # 构建响应对象
        return self._build_chat_completion_response(assistant_message_content, token_usage)


class TransformersBaseChatCompletion(BaseChatCompletion):
    """基于Transformers库的聊天完成基类,提供通用的设备管理和量化功能"""
    
    def __init__(
        self,
        model_name: str,
        device_map: Optional[str] = None,
        device: Optional[str] = None,
    ):
        super().__init__(model_name)
        torch.set_float32_matmul_precision('high') # 设置 TensorFloat32 精度
        self.device_map = device_map
        self.device = device
        
        # 加载模型和分词器
        self._load_model_and_tokenizer()
    
    def _load_tokenizer(self):
        """加载分词器"""
        try:
            from transformers import AutoTokenizer
        except ImportError:
            raise ImportError("请先安装 transformers 库: pip install transformers")
        
        self.tokenizer = AutoTokenizer.from_pretrained(
            self.model_name,
            trust_remote_code=True
        )
        
        # 设置 pad_token 如果不存在
        if self.tokenizer.pad_token is None:
            self.tokenizer.pad_token = self.tokenizer.eos_token
    
    def _load_model(self):
        """加载模型"""
        try:
            from transformers import AutoModelForCausalLM
        except ImportError:
            raise ImportError("请先安装 transformers 库: pip install transformers")
        
        # 确保编译功能被禁用
        os.environ["PYTORCH_DISABLE_DYNAMO"] = "1"
        os.environ["TORCH_COMPILE_DISABLE"] = "1"
        try:
            import torch._dynamo
            torch._dynamo.config.disable = True
            torch._dynamo.config.suppress_errors = True
        except (ImportError, AttributeError):
            pass
        
        print(f"正在加载模型: {self.model_name}")
        print(f"目标设备: {self.device}")
        print(f"设备映射: {self.device_map}")
        
        # 配置模型加载参数
        model_kwargs = {
            "trust_remote_code": True,
        }
        
        # 处理设备映射
        if self.device_map is not None:
            if self.device and self.device.type == "mps":
                print("警告: MPS 设备不支持 device_map,将手动管理设备")
            else:
                model_kwargs["device_map"] = self.device_map
                print(f"使用设备映射: {self.device_map}")
        
        # 加载模型
        print("开始加载模型...")
        self.model = AutoModelForCausalLM.from_pretrained(
            self.model_name,
            **model_kwargs
        )
        
        # MPS 或手动设备管理
        if self.device_map is None and self.device is not None:
            print(f"手动移动模型到设备: {self.device}")
            self.model = self.model.to(self.device)
        
        # 设置模型为评估模式
        self.model.eval()
        
        print(f"模型 {self.model_name} 加载成功")
        print(f"模型数据类型: {self.model.dtype}")
        print(f"模型设备: {next(self.model.parameters()).device}")
    
    def _load_model_and_tokenizer(self):
        """加载模型和分词器"""
        try:
            self._load_tokenizer()
            self._load_model()
        except Exception as e:
            print(f"加载模型 {self.model_name} 时出错: {e}")
            self._print_error_hints()
            raise
    
    def _print_error_hints(self):
        """打印错误提示信息"""
        print("请确保模型名称正确且可访问。")
        if self.device and self.device == "mps":
            print("MPS 设备注意事项:")
            print("- 不支持 device_map")
            print("- 确保 PyTorch 版本支持 MPS")
    
    def _generate_response(
        self,
        prompt_str: str,
        temperature: float,
        max_tokens: int,
        top_p: float,
        **kwargs
    ) -> str:
        """使用 transformers 生成响应"""
        
        # 额外的编译禁用措施,确保在 Gradio Spaces 中正常工作
        try:
            import torch._dynamo
            torch._dynamo.config.disable = True
        except (ImportError, AttributeError):
            pass
        
        # 对提示进行编码
        inputs = self.tokenizer.encode(prompt_str, return_tensors="pt")
        
        # 移动输入到正确的设备
        if self.device_map is None or (self.device and hasattr(self.device, 'type') and self.device.type == "mps"):
            inputs = inputs.to(self.device)
        
        # 优化的生成参数配置
        generation_config = {
            "max_new_tokens": max_tokens,
            "pad_token_id": self.tokenizer.pad_token_id,
            "eos_token_id": self.tokenizer.eos_token_id,
            "use_cache": True,  # 启用 KV 缓存以提高速度
        }
        
        # 温度和采样配置 - 修复 CUDA 采样错误
        if temperature > 0:
            # 确保温度值在合理范围内
            temperature = max(0.01, min(temperature, 2.0))
            top_p = max(0.01, min(top_p, 1.0))
            
            generation_config.update({
                "do_sample": True,
                "temperature": temperature,
                "top_p": top_p,
                "top_k": kwargs.get("top_k", 10),  # 降低top_k以提高确定性
            })
        else:
            # 贪婪解码 - 完全确定性
            generation_config.update({
                "do_sample": False,
                "temperature": None,
                "top_p": None,
                "top_k": None,
            })
        
        # 如果明确指定do_sample=False,强制使用贪婪解码
        if kwargs.get("do_sample") is False:
            generation_config.update({
                "do_sample": False,
                "temperature": None,
                "top_p": None,
                "top_k": None,
            })
            print("强制使用贪婪解码模式")
        
        # 重复惩罚配置 - 针对结构化输出优化
        repetition_penalty = kwargs.get("repetition_penalty", 1.0)  # 默认不使用重复惩罚
        if repetition_penalty != 1.0:
            repetition_penalty = max(1.0, min(repetition_penalty, 1.3))  # 限制在更小范围内
            generation_config["repetition_penalty"] = repetition_penalty
        
        # 移除no_repeat_ngram_size以避免干扰JSON格式
        # generation_config["no_repeat_ngram_size"] = kwargs.get("no_repeat_ngram_size", 2)
        
        # 长度惩罚(可选)- 针对结构化输出调整
        if kwargs.get("length_penalty") and kwargs["length_penalty"] != 1.0:
            length_penalty = max(0.9, min(kwargs["length_penalty"], 1.1))  # 更保守的长度惩罚
            generation_config["length_penalty"] = length_penalty
        
        # 针对结构化输出的特殊配置
        if max_tokens <= 256:  # 如果是短输出任务(如JSON),使用更确定性的配置
            generation_config.update({
                "early_stopping": True,
                "num_beams": 1,  # 使用贪婪搜索
            })
            # 如果允许采样,使用较低的温度
            if generation_config.get("do_sample", False):
                generation_config["temperature"] = min(generation_config.get("temperature", 0.1), 0.3)
                generation_config["top_p"] = min(generation_config.get("top_p", 0.3), 0.5)
            print("检测到短输出任务,使用优化的生成配置")
        
        # 处理stop tokens
        stop_strings = kwargs.get("stop", [])
        if stop_strings:
            # 将stop字符串转换为token IDs
            stop_token_ids = []
            for stop_str in stop_strings:
                try:
                    # 编码stop字符串为token IDs
                    stop_tokens = self.tokenizer.encode(stop_str, add_special_tokens=False)
                    stop_token_ids.extend(stop_tokens)
                except Exception as e:
                    print(f"无法编码stop字符串 '{stop_str}': {e}")
            
            if stop_token_ids:
                # 去重并添加到eos_token_id列表中
                existing_eos = generation_config.get("eos_token_id", self.tokenizer.eos_token_id)
                if isinstance(existing_eos, int):
                    existing_eos = [existing_eos]
                elif existing_eos is None:
                    existing_eos = []
                
                all_stop_tokens = list(set(existing_eos + stop_token_ids))
                generation_config["eos_token_id"] = all_stop_tokens
                print(f"添加了 {len(stop_token_ids)} 个stop token IDs")
        
        # 调试信息
        print(f"生成配置: temperature={temperature}, max_tokens={max_tokens}, top_p={top_p}")
        print(f"输入长度: {len(inputs[0])} tokens")
        
        try:
            # 生成响应
            with torch.no_grad():
                outputs = self.model.generate(
                    inputs,
                    **generation_config
                )
            
            # 解码生成的文本,跳过输入部分
            generated_tokens = outputs[0][len(inputs[0]):]
            generated_text = self.tokenizer.decode(generated_tokens, skip_special_tokens=True)
            
            print(f"生成完成,输出长度: {len(generated_tokens)} tokens")
            return generated_text
            
        except torch._dynamo.exc.BackendCompilerFailed as e:
            print(f"PyTorch 编译器错误,尝试禁用编译后重试: {e}")
            # 强制禁用编译并重试
            try:
                torch._dynamo.reset()
                torch._dynamo.config.disable = True
                os.environ["PYTORCH_DISABLE_DYNAMO"] = "1"
                
                with torch.no_grad():
                    outputs = self.model.generate(
                        inputs,
                        **generation_config
                    )
                
                generated_tokens = outputs[0][len(inputs[0]):]
                generated_text = self.tokenizer.decode(generated_tokens, skip_special_tokens=True)
                
                print(f"禁用编译后生成完成,输出长度: {len(generated_tokens)} tokens")
                return generated_text
                
            except Exception as retry_e:
                print(f"禁用编译后仍然失败: {retry_e}")
                raise e
        except RuntimeError as e:
            if "CUDA error" in str(e):
                print(f"CUDA 错误,尝试使用 CPU 进行推理: {e}")
                # 尝试移动到 CPU 并重试
                try:
                    inputs_cpu = inputs.cpu()
                    model_cpu = self.model.cpu()
                    
                    with torch.no_grad():
                        outputs = model_cpu.generate(
                            inputs_cpu,
                            **generation_config
                        )
                    
                    # 移回原设备
                    self.model = self.model.to(self.device)
                    
                    generated_tokens = outputs[0][len(inputs_cpu[0]):]
                    generated_text = self.tokenizer.decode(generated_tokens, skip_special_tokens=True)
                    
                    print(f"CPU 推理完成,输出长度: {len(generated_tokens)} tokens")
                    return generated_text
                    
                except Exception as cpu_e:
                    print(f"CPU 推理也失败: {cpu_e}")
                    raise e
            else:
                raise e
        except Exception as e:
            # 处理其他编译器相关错误
            if "BackendCompilerFailed" in str(e) or "dynamo" in str(e).lower() or "inductor" in str(e).lower():
                print(f"检测到编译器相关错误,尝试完全禁用编译: {e}")
                try:
                    # 强制禁用所有编译功能
                    os.environ["PYTORCH_DISABLE_DYNAMO"] = "1"
                    os.environ["TORCH_COMPILE_DISABLE"] = "1"
                    
                    # 如果可能,重置编译状态
                    try:
                        torch._dynamo.reset()
                        torch._dynamo.config.disable = True
                        torch._dynamo.config.suppress_errors = True
                    except:
                        pass
                    
                    with torch.no_grad():
                        outputs = self.model.generate(
                            inputs,
                            **generation_config
                        )
                    
                    generated_tokens = outputs[0][len(inputs[0]):]
                    generated_text = self.tokenizer.decode(generated_tokens, skip_special_tokens=True)
                    
                    print(f"完全禁用编译后生成完成,输出长度: {len(generated_tokens)} tokens")
                    return generated_text
                    
                except Exception as final_e:
                    print(f"所有重试都失败: {final_e}")
                    raise e
            else:
                print(f"生成响应时出错: {e}")
                import traceback
                traceback.print_exc()
                raise
    
    def get_model_info(self) -> Dict[str, Union[str, bool, int]]:
        """获取模型信息"""
        model_info = {
            "model_name": self.model_name,
            "device": str(self.device),
            "device_type": self.device.type,
            "device_map": self.device_map,
            "model_type": "transformers",
            "mps_available": torch.backends.mps.is_available() if hasattr(torch.backends, 'mps') else False,
            "cuda_available": torch.cuda.is_available(),
        }
        
        # 添加模型配置信息(如果可用)
        try:
            if hasattr(self.model, "config"):
                config = self.model.config
                model_info.update({
                    "vocab_size": getattr(config, "vocab_size", "未知"),
                    "hidden_size": getattr(config, "hidden_size", "未知"),
                    "num_layers": getattr(config, "num_hidden_layers", "未知"),
                    "num_attention_heads": getattr(config, "num_attention_heads", "未知"),
                })
        except Exception:
            pass
        
        return model_info
    
    def clear_cache(self):
        """清理 GPU 缓存"""
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
            print("GPU 缓存已清理")