Spaces:
Running
Running
File size: 27,067 Bytes
ae20fe2 8289369 ae20fe2 8289369 ae20fe2 8289369 5a751c2 8289369 5a751c2 8289369 5a751c2 8289369 5a751c2 8289369 5a751c2 8289369 5a751c2 8289369 5a751c2 8289369 5a751c2 8289369 5a751c2 8289369 5a751c2 8289369 5a751c2 8289369 d709cdc 8289369 b88a2d6 8289369 642af4d 8289369 ae20fe2 8289369 642af4d 8289369 5a751c2 8289369 5a751c2 8289369 5a751c2 642af4d 8289369 5a751c2 8289369 5a751c2 8289369 642af4d 8289369 ae20fe2 8289369 5a751c2 8289369 5a751c2 8289369 5a751c2 8289369 5a751c2 8289369 5a751c2 8289369 ae20fe2 5a751c2 8289369 ae20fe2 8289369 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 |
"""
LLM基础类定义
提供聊天完成功能的抽象基类和Transformers实现
"""
import logging
import time
import uuid
import torch
from typing import List, Dict, Optional, Union, Literal
from abc import ABC, abstractmethod
import os
# 禁用 PyTorch 编译以避免在 Gradio Spaces 中的兼容性问题
os.environ["PYTORCH_DISABLE_DYNAMO"] = "1"
# 如果 torch._dynamo 可用,禁用它
try:
import torch._dynamo
torch._dynamo.config.disable = True
torch._dynamo.config.suppress_errors = True
except ImportError:
pass
# 配置日志
logger = logging.getLogger("llm")
class BaseChatCompletion(ABC):
"""Gemma 聊天完成的基类,包含公共功能"""
def __init__(self, model_name: str):
self.model_name = model_name
@abstractmethod
def _load_model_and_tokenizer(self):
"""加载模型和分词器的抽象方法,由子类实现"""
pass
@abstractmethod
def _generate_response(self, prompt_str: str, temperature: float, max_tokens: int, top_p: float, **kwargs) -> str:
"""生成响应的抽象方法,由子类实现"""
pass
def _format_messages_for_gemma(self, messages: List[Dict[str, str]]) -> str:
try:
# 确保消息格式正确
formatted_messages = []
for msg in messages:
if msg.get("role") and msg.get("content"):
formatted_messages.append({
"role": msg["role"],
"content": msg["content"]
})
# 使用官方聊天模板
prompt_str = self.tokenizer.apply_chat_template(
formatted_messages,
tokenize=False,
add_generation_prompt=True
)
# 调试信息
print(f"使用官方聊天模板格式化成功,长度: {len(prompt_str)}")
return prompt_str
except Exception as e:
print(f"官方聊天模板失败: {e},使用手动格式化")
# 手动格式化 - 改进版本
prompt_parts = []
# 处理系统消息 - Gemma 3 的正确处理方式
system_messages = [msg for msg in messages if msg.get("role") == "system"]
other_messages = [msg for msg in messages if msg.get("role") != "system"]
# 对于 Gemma,系统消息通常需要特殊处理
if system_messages:
# 将系统消息作为第一个用户消息的前缀
system_content = "\n".join([msg["content"] for msg in system_messages])
if other_messages and other_messages[0].get("role") == "user":
# 将系统提示合并到第一个用户消息中
first_user_msg = other_messages[0]
combined_content = f"{system_content}\n\n{first_user_msg['content']}"
other_messages[0] = {"role": "user", "content": combined_content}
else:
# 如果没有用户消息,创建一个包含系统提示的用户消息
other_messages.insert(0, {"role": "user", "content": system_content})
# 格式化其他消息
for message in other_messages:
role = message.get("role")
content = message.get("content", "").strip()
if not content:
continue
if role == "user":
prompt_parts.append(f"<start_of_turn>user\n{content}<end_of_turn>")
elif role == "assistant":
prompt_parts.append(f"<start_of_turn>model\n{content}<end_of_turn>")
# 添加生成提示
prompt_parts.append("<start_of_turn>model")
formatted_prompt = "\n".join(prompt_parts)
print(f"手动格式化完成,长度: {len(formatted_prompt)}")
return formatted_prompt
def _post_process_response(self, response_text: str, prompt_str: str) -> str:
"""
后处理生成的响应文本,清理提示和特殊标记
"""
print(f"原始响应长度: {len(response_text)}")
print(f"原始响应前100字符: {response_text[:100]}")
# 如果模型输出包含提示,则移除提示部分
if response_text.startswith(prompt_str):
assistant_message_content = response_text[len(prompt_str):].strip()
print("检测到响应包含提示,已移除提示部分")
else:
# 尝试找到最后一个 "<start_of_turn>model" 标记
model_start_marker = "<start_of_turn>model"
if model_start_marker in response_text:
parts = response_text.split(model_start_marker)
assistant_message_content = parts[-1].strip()
print("通过 <start_of_turn>model 标记分割响应")
else:
# 如果没有找到标记,使用整个响应
assistant_message_content = response_text.strip()
print("未找到特殊标记,使用完整响应")
# 清理结束标记
end_markers = ["<end_of_turn>", "<|endoftext|>", "</s>"]
for marker in end_markers:
if marker in assistant_message_content:
assistant_message_content = assistant_message_content.split(marker)[0].strip()
print(f"移除结束标记: {marker}")
# 特殊处理:如果响应看起来像 JSON,尝试提取 JSON 部分
if "{" in assistant_message_content and "}" in assistant_message_content:
# 尝试提取 JSON 对象
first_brace = assistant_message_content.find("{")
last_brace = assistant_message_content.rfind("}")
if first_brace != -1 and last_brace != -1 and last_brace > first_brace:
potential_json = assistant_message_content[first_brace:last_brace + 1]
# 验证是否为有效 JSON
try:
import json
json.loads(potential_json)
assistant_message_content = potential_json
print("提取并验证了 JSON 响应")
except json.JSONDecodeError:
print("JSON 验证失败,保持原始响应")
# 如果JSON验证失败,尝试清理常见的非JSON内容
lines = assistant_message_content.split('\n')
cleaned_lines = []
json_started = False
for line in lines:
line = line.strip()
# 跳过明显的解释性文本
if any(phrase in line.lower() for phrase in [
'here is', 'here\'s', 'based on', 'analysis', 'looking at',
'the json', 'response:', 'result:', 'output:', 'answer:',
'i can see', 'it appears', 'according to'
]):
continue
# 如果遇到JSON开始,标记开始
if '{' in line:
json_started = True
# 如果已经开始JSON,保留所有内容
if json_started:
cleaned_lines.append(line)
# 如果遇到JSON结束,停止
if '}' in line and json_started:
break
if cleaned_lines:
assistant_message_content = '\n'.join(cleaned_lines)
print("清理了非JSON解释性内容")
# 最终清理:移除常见的解释性前缀和后缀
prefixes_to_remove = [
"Here is the JSON:", "Here's the JSON:", "The JSON response is:",
"Based on the analysis:", "Looking at the information:",
"Here is my analysis:", "The result is:", "My response:",
"Output:", "Answer:", "Result:"
]
for prefix in prefixes_to_remove:
if assistant_message_content.lower().startswith(prefix.lower()):
assistant_message_content = assistant_message_content[len(prefix):].strip()
print(f"移除前缀: {prefix}")
break
# 移除常见的后缀解释
suffixes_to_remove = [
"This JSON object maps each speaker ID to their identified name or role.",
"Each speaker has been identified based on the provided information.",
"The identification is based on the dialogue samples and metadata."
]
for suffix in suffixes_to_remove:
if assistant_message_content.lower().endswith(suffix.lower()):
assistant_message_content = assistant_message_content[:-len(suffix)].strip()
print(f"移除后缀: {suffix}")
break
# 最终清理
assistant_message_content = assistant_message_content.strip()
print(f"处理后响应长度: {len(assistant_message_content)}")
print(f"处理后响应前100字符: {assistant_message_content[:100]}")
return assistant_message_content
def _calculate_tokens(self, prompt_str: str, assistant_message_content: str) -> Dict[str, int]:
"""
计算token数量(近似值,因为确切的OpenAI分词可能不同)
"""
# 对于提示token,我们对输入到模型的字符串进行分词。
# 对于完成token,我们对生成的助手消息进行分词。
prompt_tokens = len(self.tokenizer.encode(prompt_str))
completion_tokens = len(self.tokenizer.encode(assistant_message_content))
total_tokens = prompt_tokens + completion_tokens
return {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": total_tokens
}
def _build_chat_completion_response(self, assistant_message_content: str, token_usage: Dict[str, int]) -> Dict:
"""
构建模仿OpenAI结构的响应对象
基于: https://platform.openai.com/docs/api-reference/chat/object
"""
# 获取完成的当前时间戳
created_timestamp = int(time.time())
completion_id = f"chatcmpl-{uuid.uuid4().hex}" # 创建一个唯一的ID
return {
"id": completion_id,
"object": "chat.completion",
"created": created_timestamp,
"model": self.model_name, # 报告我们使用的模型名称
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": assistant_message_content,
},
"finish_reason": "stop", # 假定为 "stop"
}
],
"usage": token_usage,
}
def create(
self,
messages: List[Dict[str, str]],
temperature: float = 0.7,
max_tokens: int = 2048,
top_p: float = 1.0,
**kwargs,
):
"""
创建聊天完成响应。
模仿OpenAI的ChatCompletion.create方法。
"""
# 为Gemma格式化消息
prompt_str = self._format_messages_for_gemma(messages)
# 生成响应(由子类实现)
response_text = self._generate_response(prompt_str, temperature, max_tokens, top_p, **kwargs)
# 后处理响应
assistant_message_content = self._post_process_response(response_text, prompt_str)
# 计算token使用量
token_usage = self._calculate_tokens(prompt_str, assistant_message_content)
# 构建响应对象
return self._build_chat_completion_response(assistant_message_content, token_usage)
class TransformersBaseChatCompletion(BaseChatCompletion):
"""基于Transformers库的聊天完成基类,提供通用的设备管理和量化功能"""
def __init__(
self,
model_name: str,
device_map: Optional[str] = None,
device: Optional[str] = None,
):
super().__init__(model_name)
torch.set_float32_matmul_precision('high') # 设置 TensorFloat32 精度
self.device_map = device_map
self.device = device
# 加载模型和分词器
self._load_model_and_tokenizer()
def _load_tokenizer(self):
"""加载分词器"""
try:
from transformers import AutoTokenizer
except ImportError:
raise ImportError("请先安装 transformers 库: pip install transformers")
self.tokenizer = AutoTokenizer.from_pretrained(
self.model_name,
trust_remote_code=True
)
# 设置 pad_token 如果不存在
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
def _load_model(self):
"""加载模型"""
try:
from transformers import AutoModelForCausalLM
except ImportError:
raise ImportError("请先安装 transformers 库: pip install transformers")
# 确保编译功能被禁用
os.environ["PYTORCH_DISABLE_DYNAMO"] = "1"
os.environ["TORCH_COMPILE_DISABLE"] = "1"
try:
import torch._dynamo
torch._dynamo.config.disable = True
torch._dynamo.config.suppress_errors = True
except (ImportError, AttributeError):
pass
print(f"正在加载模型: {self.model_name}")
print(f"目标设备: {self.device}")
print(f"设备映射: {self.device_map}")
# 配置模型加载参数
model_kwargs = {
"trust_remote_code": True,
}
# 处理设备映射
if self.device_map is not None:
if self.device and self.device.type == "mps":
print("警告: MPS 设备不支持 device_map,将手动管理设备")
else:
model_kwargs["device_map"] = self.device_map
print(f"使用设备映射: {self.device_map}")
# 加载模型
print("开始加载模型...")
self.model = AutoModelForCausalLM.from_pretrained(
self.model_name,
**model_kwargs
)
# MPS 或手动设备管理
if self.device_map is None and self.device is not None:
print(f"手动移动模型到设备: {self.device}")
self.model = self.model.to(self.device)
# 设置模型为评估模式
self.model.eval()
print(f"模型 {self.model_name} 加载成功")
print(f"模型数据类型: {self.model.dtype}")
print(f"模型设备: {next(self.model.parameters()).device}")
def _load_model_and_tokenizer(self):
"""加载模型和分词器"""
try:
self._load_tokenizer()
self._load_model()
except Exception as e:
print(f"加载模型 {self.model_name} 时出错: {e}")
self._print_error_hints()
raise
def _print_error_hints(self):
"""打印错误提示信息"""
print("请确保模型名称正确且可访问。")
if self.device and self.device == "mps":
print("MPS 设备注意事项:")
print("- 不支持 device_map")
print("- 确保 PyTorch 版本支持 MPS")
def _generate_response(
self,
prompt_str: str,
temperature: float,
max_tokens: int,
top_p: float,
**kwargs
) -> str:
"""使用 transformers 生成响应"""
# 额外的编译禁用措施,确保在 Gradio Spaces 中正常工作
try:
import torch._dynamo
torch._dynamo.config.disable = True
except (ImportError, AttributeError):
pass
# 对提示进行编码
inputs = self.tokenizer.encode(prompt_str, return_tensors="pt")
# 移动输入到正确的设备
if self.device_map is None or (self.device and hasattr(self.device, 'type') and self.device.type == "mps"):
inputs = inputs.to(self.device)
# 优化的生成参数配置
generation_config = {
"max_new_tokens": max_tokens,
"pad_token_id": self.tokenizer.pad_token_id,
"eos_token_id": self.tokenizer.eos_token_id,
"use_cache": True, # 启用 KV 缓存以提高速度
}
# 温度和采样配置 - 修复 CUDA 采样错误
if temperature > 0:
# 确保温度值在合理范围内
temperature = max(0.01, min(temperature, 2.0))
top_p = max(0.01, min(top_p, 1.0))
generation_config.update({
"do_sample": True,
"temperature": temperature,
"top_p": top_p,
"top_k": kwargs.get("top_k", 10), # 降低top_k以提高确定性
})
else:
# 贪婪解码 - 完全确定性
generation_config.update({
"do_sample": False,
"temperature": None,
"top_p": None,
"top_k": None,
})
# 如果明确指定do_sample=False,强制使用贪婪解码
if kwargs.get("do_sample") is False:
generation_config.update({
"do_sample": False,
"temperature": None,
"top_p": None,
"top_k": None,
})
print("强制使用贪婪解码模式")
# 重复惩罚配置 - 针对结构化输出优化
repetition_penalty = kwargs.get("repetition_penalty", 1.0) # 默认不使用重复惩罚
if repetition_penalty != 1.0:
repetition_penalty = max(1.0, min(repetition_penalty, 1.3)) # 限制在更小范围内
generation_config["repetition_penalty"] = repetition_penalty
# 移除no_repeat_ngram_size以避免干扰JSON格式
# generation_config["no_repeat_ngram_size"] = kwargs.get("no_repeat_ngram_size", 2)
# 长度惩罚(可选)- 针对结构化输出调整
if kwargs.get("length_penalty") and kwargs["length_penalty"] != 1.0:
length_penalty = max(0.9, min(kwargs["length_penalty"], 1.1)) # 更保守的长度惩罚
generation_config["length_penalty"] = length_penalty
# 针对结构化输出的特殊配置
if max_tokens <= 256: # 如果是短输出任务(如JSON),使用更确定性的配置
generation_config.update({
"early_stopping": True,
"num_beams": 1, # 使用贪婪搜索
})
# 如果允许采样,使用较低的温度
if generation_config.get("do_sample", False):
generation_config["temperature"] = min(generation_config.get("temperature", 0.1), 0.3)
generation_config["top_p"] = min(generation_config.get("top_p", 0.3), 0.5)
print("检测到短输出任务,使用优化的生成配置")
# 处理stop tokens
stop_strings = kwargs.get("stop", [])
if stop_strings:
# 将stop字符串转换为token IDs
stop_token_ids = []
for stop_str in stop_strings:
try:
# 编码stop字符串为token IDs
stop_tokens = self.tokenizer.encode(stop_str, add_special_tokens=False)
stop_token_ids.extend(stop_tokens)
except Exception as e:
print(f"无法编码stop字符串 '{stop_str}': {e}")
if stop_token_ids:
# 去重并添加到eos_token_id列表中
existing_eos = generation_config.get("eos_token_id", self.tokenizer.eos_token_id)
if isinstance(existing_eos, int):
existing_eos = [existing_eos]
elif existing_eos is None:
existing_eos = []
all_stop_tokens = list(set(existing_eos + stop_token_ids))
generation_config["eos_token_id"] = all_stop_tokens
print(f"添加了 {len(stop_token_ids)} 个stop token IDs")
# 调试信息
print(f"生成配置: temperature={temperature}, max_tokens={max_tokens}, top_p={top_p}")
print(f"输入长度: {len(inputs[0])} tokens")
try:
# 生成响应
with torch.no_grad():
outputs = self.model.generate(
inputs,
**generation_config
)
# 解码生成的文本,跳过输入部分
generated_tokens = outputs[0][len(inputs[0]):]
generated_text = self.tokenizer.decode(generated_tokens, skip_special_tokens=True)
print(f"生成完成,输出长度: {len(generated_tokens)} tokens")
return generated_text
except torch._dynamo.exc.BackendCompilerFailed as e:
print(f"PyTorch 编译器错误,尝试禁用编译后重试: {e}")
# 强制禁用编译并重试
try:
torch._dynamo.reset()
torch._dynamo.config.disable = True
os.environ["PYTORCH_DISABLE_DYNAMO"] = "1"
with torch.no_grad():
outputs = self.model.generate(
inputs,
**generation_config
)
generated_tokens = outputs[0][len(inputs[0]):]
generated_text = self.tokenizer.decode(generated_tokens, skip_special_tokens=True)
print(f"禁用编译后生成完成,输出长度: {len(generated_tokens)} tokens")
return generated_text
except Exception as retry_e:
print(f"禁用编译后仍然失败: {retry_e}")
raise e
except RuntimeError as e:
if "CUDA error" in str(e):
print(f"CUDA 错误,尝试使用 CPU 进行推理: {e}")
# 尝试移动到 CPU 并重试
try:
inputs_cpu = inputs.cpu()
model_cpu = self.model.cpu()
with torch.no_grad():
outputs = model_cpu.generate(
inputs_cpu,
**generation_config
)
# 移回原设备
self.model = self.model.to(self.device)
generated_tokens = outputs[0][len(inputs_cpu[0]):]
generated_text = self.tokenizer.decode(generated_tokens, skip_special_tokens=True)
print(f"CPU 推理完成,输出长度: {len(generated_tokens)} tokens")
return generated_text
except Exception as cpu_e:
print(f"CPU 推理也失败: {cpu_e}")
raise e
else:
raise e
except Exception as e:
# 处理其他编译器相关错误
if "BackendCompilerFailed" in str(e) or "dynamo" in str(e).lower() or "inductor" in str(e).lower():
print(f"检测到编译器相关错误,尝试完全禁用编译: {e}")
try:
# 强制禁用所有编译功能
os.environ["PYTORCH_DISABLE_DYNAMO"] = "1"
os.environ["TORCH_COMPILE_DISABLE"] = "1"
# 如果可能,重置编译状态
try:
torch._dynamo.reset()
torch._dynamo.config.disable = True
torch._dynamo.config.suppress_errors = True
except:
pass
with torch.no_grad():
outputs = self.model.generate(
inputs,
**generation_config
)
generated_tokens = outputs[0][len(inputs[0]):]
generated_text = self.tokenizer.decode(generated_tokens, skip_special_tokens=True)
print(f"完全禁用编译后生成完成,输出长度: {len(generated_tokens)} tokens")
return generated_text
except Exception as final_e:
print(f"所有重试都失败: {final_e}")
raise e
else:
print(f"生成响应时出错: {e}")
import traceback
traceback.print_exc()
raise
def get_model_info(self) -> Dict[str, Union[str, bool, int]]:
"""获取模型信息"""
model_info = {
"model_name": self.model_name,
"device": str(self.device),
"device_type": self.device.type,
"device_map": self.device_map,
"model_type": "transformers",
"mps_available": torch.backends.mps.is_available() if hasattr(torch.backends, 'mps') else False,
"cuda_available": torch.cuda.is_available(),
}
# 添加模型配置信息(如果可用)
try:
if hasattr(self.model, "config"):
config = self.model.config
model_info.update({
"vocab_size": getattr(config, "vocab_size", "未知"),
"hidden_size": getattr(config, "hidden_size", "未知"),
"num_layers": getattr(config, "num_hidden_layers", "未知"),
"num_attention_heads": getattr(config, "num_attention_heads", "未知"),
})
except Exception:
pass
return model_info
def clear_cache(self):
"""清理 GPU 缓存"""
if torch.cuda.is_available():
torch.cuda.empty_cache()
print("GPU 缓存已清理") |