Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,384 Bytes
5b8270b 5daaa78 ea808ab 5b8270b ea808ab 5b8270b ea808ab 5b8270b be24378 5b8270b be24378 5b8270b be24378 8655f65 be24378 5b8270b 031d0a1 be24378 5d792ae aaa3b90 be24378 5b8270b be24378 5d792ae 5b8270b e69a969 5b8270b be24378 56732fb 5b8270b e982174 5b8270b be24378 eaac997 5b8270b e982174 be24378 8655f65 be24378 66818c2 be24378 097eb9b 5b8270b 097eb9b e982174 66818c2 56732fb 5b8270b 097eb9b 5b8270b be24378 56732fb 5b8270b be24378 e982174 be24378 e982174 be24378 e982174 5b8270b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
import gradio as gr
import numpy as np
import spaces
import torch
import random
from PIL import Image
#from kontext_pipeline import FluxKontextPipeline
from diffusers import FluxKontextPipeline
from diffusers.utils import load_image
# Load Kontext model
MAX_SEED = np.iinfo(np.int32).max
pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16).to("cuda")
def concatenate_images(images, direction="horizontal"):
"""
Concatenate multiple PIL images either horizontally or vertically.
Args:
images: List of PIL Images
direction: "horizontal" or "vertical"
Returns:
PIL Image: Concatenated image
"""
if not images:
return None
# Filter out None images
valid_images = [img for img in images if img is not None]
if not valid_images:
return None
if len(valid_images) == 1:
return valid_images[0].convert("RGB")
# Convert all images to RGB
valid_images = [img.convert("RGB") for img in valid_images]
if direction == "horizontal":
# Calculate total width and max height
total_width = sum(img.width for img in valid_images)
max_height = max(img.height for img in valid_images)
# Create new image
concatenated = Image.new('RGB', (total_width, max_height), (255, 255, 255))
# Paste images
x_offset = 0
for img in valid_images:
# Center image vertically if heights differ
y_offset = (max_height - img.height) // 2
concatenated.paste(img, (x_offset, y_offset))
x_offset += img.width
else: # vertical
# Calculate max width and total height
max_width = max(img.width for img in valid_images)
total_height = sum(img.height for img in valid_images)
# Create new image
concatenated = Image.new('RGB', (max_width, total_height), (255, 255, 255))
# Paste images
y_offset = 0
for img in valid_images:
# Center image horizontally if widths differ
x_offset = (max_width - img.width) // 2
concatenated.paste(img, (x_offset, y_offset))
y_offset += img.height
return concatenated
@spaces.GPU
def infer(input_images, prompt, seed=42, randomize_seed=False, guidance_scale=2.5, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# Handle input_images - it could be a single image or a list of images
if input_images is None:
raise gr.Error("Please upload at least one image.")
# If it's a single image (not a list), convert to list
if not isinstance(input_images, list):
input_images = [input_images]
# Filter out None images
valid_images = [img[0] for img in input_images if img is not None]
if not valid_images:
raise gr.Error("Please upload at least one valid image.")
# Concatenate images horizontally
concatenated_image = concatenate_images(valid_images, "horizontal")
if concatenated_image is None:
raise gr.Error("Failed to process the input images.")
# original_width, original_height = concatenated_image.size
# if original_width >= original_height:
# new_width = 1024
# new_height = int(original_height * (new_width / original_width))
# new_height = round(new_height / 64) * 64
# else:
# new_height = 1024
# new_width = int(original_width * (new_height / original_height))
# new_width = round(new_width / 64) * 64
#concatenated_image_resized = concatenated_image.resize((new_width, new_height), Image.LANCZOS)
final_prompt = f"From the provided reference images, create a unified, cohesive image such that {prompt}. Maintain the identity and characteristics of each subject while adjusting their proportions, scale, and positioning to create a harmonious, naturally balanced composition. Blend and integrate all elements seamlessly with consistent lighting, perspective, and style.the final result should look like a single naturally captured scene where all subjects are properly sized and positioned relative to each other, not assembled from multiple sources."
image = pipe(
image=concatenated_image,
prompt=final_prompt,
guidance_scale=guidance_scale,
width=concatenated_image.size[0],
height=concatenated_image.size[1],
generator=torch.Generator().manual_seed(seed),
).images[0]
return image, seed, gr.update(visible=True)
css="""
#col-container {
margin: 0 auto;
max-width: 960px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# FLUX.1 Kontext [dev] - Multi-Image
Flux Kontext with multiple image input support - compose a new image with elements from multiple images using Kontext [dev]
""")
with gr.Row():
with gr.Column():
input_images = gr.Gallery(
label="Upload image(s) for editing",
show_label=True,
elem_id="gallery_input",
columns=3,
rows=2,
object_fit="contain",
height="auto",
file_types=['image'],
type='pil'
)
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt for editing (e.g., 'Remove glasses', 'Add a hat')",
container=False,
)
run_button = gr.Button("Run", scale=0)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=10,
step=0.1,
value=2.5,
)
with gr.Column():
result = gr.Image(label="Result", show_label=False, interactive=False)
reuse_button = gr.Button("Reuse this image", visible=False)
gr.on(
triggers=[run_button.click, prompt.submit],
fn = infer,
inputs = [input_images, prompt, seed, randomize_seed, guidance_scale],
outputs = [result, seed, reuse_button]
)
reuse_button.click(
fn = lambda image: [image] if image is not None else [], # Convert single image to list for gallery
inputs = [result],
outputs = [input_images]
)
demo.launch() |