Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
added line fitting module
Browse files- app.py +71 -0
- requirements.txt +4 -0
app.py
ADDED
|
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Example showing how to fit a 2d line with kornia / pytorch
|
| 2 |
+
import matplotlib.pyplot as plt
|
| 3 |
+
import torch
|
| 4 |
+
import matplotlib
|
| 5 |
+
matplotlib.use('Agg')
|
| 6 |
+
import matplotlib.pyplot as plt
|
| 7 |
+
import gradio as gr
|
| 8 |
+
from kornia.geometry.line import ParametrizedLine, fit_line
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def inference(point1, point2, point3, point4):
|
| 12 |
+
std = 1.2 # standard deviation for the points
|
| 13 |
+
num_points = 50 # total number of points
|
| 14 |
+
|
| 15 |
+
# create a baseline
|
| 16 |
+
p0 = torch.tensor([point1, point2], dtype=torch.float32)
|
| 17 |
+
p1 = torch.tensor([point3, point4], dtype=torch.float32)
|
| 18 |
+
|
| 19 |
+
l1 = ParametrizedLine.through(p0, p1)
|
| 20 |
+
|
| 21 |
+
# sample some points and weights
|
| 22 |
+
pts, w = [], []
|
| 23 |
+
for t in torch.linspace(-10, 10, num_points):
|
| 24 |
+
p2 = l1.point_at(t)
|
| 25 |
+
p2_noise = torch.rand_like(p2) * std
|
| 26 |
+
p2 += p2_noise
|
| 27 |
+
pts.append(p2)
|
| 28 |
+
w.append(1 - p2_noise.mean())
|
| 29 |
+
pts = torch.stack(pts)
|
| 30 |
+
w = torch.stack(w)
|
| 31 |
+
|
| 32 |
+
l2 = fit_line(pts, w)
|
| 33 |
+
|
| 34 |
+
# project some points along the estimated line
|
| 35 |
+
p3 = l2.point_at(-10)
|
| 36 |
+
p4 = l2.point_at(10)
|
| 37 |
+
|
| 38 |
+
X = torch.stack((p3, p4)).detach().numpy()
|
| 39 |
+
X_pts = pts.detach().numpy()
|
| 40 |
+
|
| 41 |
+
fig = plt.figure()
|
| 42 |
+
plt.plot(X_pts[:, 0], X_pts[:, 1], 'ro')
|
| 43 |
+
plt.plot(X[:, 0], X[:, 1])
|
| 44 |
+
return fig
|
| 45 |
+
|
| 46 |
+
inputs = [
|
| 47 |
+
gr.inputs.Slider(0.0, 10.0, default=0.0, label="Point 1"),
|
| 48 |
+
gr.inputs.Slider(0.0, 10.0, default=0.0, label="Point 2"),
|
| 49 |
+
gr.inputs.Slider(0.0, 10.0, default=0.0, label="Point 3"),
|
| 50 |
+
gr.inputs.Slider(0.0, 10.0, default=0.0, label="Point 4"),
|
| 51 |
+
]
|
| 52 |
+
outputs = gr.Plot()
|
| 53 |
+
|
| 54 |
+
examples = [
|
| 55 |
+
[[0.0, 0.0, 1.0, 1.0]],
|
| 56 |
+
[[0.0, 0.0, 1.0, 2.0]],
|
| 57 |
+
]
|
| 58 |
+
|
| 59 |
+
title = 'Line Fitting'
|
| 60 |
+
|
| 61 |
+
demo = gr.Interface(
|
| 62 |
+
fn=inference,
|
| 63 |
+
inputs=inputs,
|
| 64 |
+
outputs=outputs,
|
| 65 |
+
title=title,
|
| 66 |
+
cache_examples=True,
|
| 67 |
+
theme='huggingface',
|
| 68 |
+
live=True,
|
| 69 |
+
|
| 70 |
+
)
|
| 71 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
kornia
|
| 2 |
+
kornia_rs
|
| 3 |
+
matplotlib
|
| 4 |
+
torch
|